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Abstract. The state-test technique, originally introduced in the context
of impossible-differential cryptanalysis and recently used as an improve-
ment for truncated-differential Meet-in-the-Middle attacks, has proven
to be useful for reducing the complexity of attacks. In essence, the idea
is to guess parts of the state instead of the key during the key-guessing
stage of an attack, ultimately reducing the number of guesses needed.
We generalize the idea of the state-test technique, allowing it to be
applied not only to impossible-differential and (truncated-)differential
Meet-in-the-Middle, but also to differential and differential-linear crypt-
analysis, proposing also a new performant technique exploiting the state-
test technique and probabilistic key-recovery. Additionally, we provide
insights on the interaction between cipher and difference needed for the
state-test technique to be applicable, finding it to be a promising option
for many ciphers.
To illustrate our findings, we provide 3 new applications of the state-
test technique: we show how it can be used to improve the best known
attack on the block cipher Pride, how it can be used to improve a step in
the best known attack on Serpent, and use it to present the first known
attacks on 24, 25 and 26 rounds of Craft (out of 32), improving by up
to three rounds over the previous best ones.

Keywords: key-recovery attack · state-test technique · differential at-
tacks · differential MitM · differential-linear · impossible differential ·
Craft · Pride.

1 Introduction

The trust we have on symmetric primitives is mainly given by cryptanalysis: The
more we analyze a primitive without finding weaknesses, the more trust we will
have in it. In order to be able to predict how far a primitive is from being broken,
it is very important to keep its security margin up to date: we try to find the
most efficient attacks on the highest possible number of rounds. This allows us
to estimate how far we are from improving this attack and from reaching more
rounds. Having an accurate estimation of the security margin is essential. Once
an attack is proposed, any further improvements that appear help to refine it
and to have a better notion of the current security of the primitive.



Unhappily, the state of the art of symmetric cryptanalysis is kind of chaotic,
as a great number of new families, variants, improvements and ad-hoc attacks
appeared in the last two decades due to cryptographic competitions. Today,
it is not possible to easily test the resistance of a given primitive against all
known attacks and all the related optimizations that have appeared: most of the
optimizations are proposed in specific scenarios, which makes it very hard to
grasp the nature and potential of the improvement.

In this paper, we aim at generalizing and clarifying new potential uses of the
state-test technique. This idea was originally introduced by Boura et al in [10]
in the particular context of impossible-differential attacks but a similar idea
was used in [15,17] in the Meet-in-the-Middle context, and it was recently used
by Ahmadian et al in [1] in the context of (truncated-)differential Meet-in-the-
Middle attacks. In essence, this technique allows to reduce the overall number
of guesses by guessing internal state values instead of the involved key bits.
This allows, depending on the cases, to identify a unique partition of the key
bits (impossible-differential attacks) or to recover non-linear equations involving
some key bits and, therefore, a system of equations to solve in the end. This
technique also seems related to guess-and-determine attacks, that were intro-
duced in the context of stream ciphers [25], and also applied to hash functions
and block ciphers, like in [23,18]. As in the state-test technique, cells of the state

Cipher Rounds Time Memory Data Attack Ref.
Craft 21 2106.53 2100 260.99 ID [19]

21 2116 268 256 TD-MitM [1]
22 2125 272 258 TD-MitM [1]
23 2125 2101 260 TD-MitM [1]
23 2111.46 2120 260.99 D [26]
23 2109 236 258 TD-MitM Sec. 4
24 2110 234 260 TD-MitM Sec. 4
25 2117.58 248 260 TD-MitM Sec. 4
26 2118 234 264 TD-MitM Sec. 4

Pride 18 263.3 235 261 D [21]
18 257.83 235 261 D Sec. 5
18 265.86 234 260.17 D Sec. 5

Serpent 12 2233.55 2127.92 2127.92 CP DL [11]
12 2242.93 2118.40 2118.40 CP DL [11]
12 2214.36 2125.16 2125.16 KP L [16]
12 2210.36 2126.30 2126.30 KP L [16]
12 2233.55 2127.92 2127.92 CP DL Sec. 6
12 2240 2118.40 2118.40 CP DL Sec. 6

D Differential TD-MitM Truncated Differential MitM
DL Differential-Linear ID Impossible Differential
L Linear KP Known Plaintext
CP Chosen Plaintext

Table 1: Summary of best known attacks on Craft, Serpent and Pride
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are guessed, and then verified to be coherent with the key. We push forward the
application of the state-test technique by first giving insights for which ciphers
it could be most useful (Section 3.1), enabling us to identify ciphers in which the
state-test technique leads to improved attacks. Additionally, we propose three
new application scenarios: an improvement of differential MitM attacks by bet-
ter exploiting the state-test technique and probabilistic key-recovery (enabling a
0-round distinguisher), two separated scenarios in classical differential attacks,
and differential-linear attacks (Section 3.2).

Finally, we propose several new applications, that are summarized in Table 1.
In particular, thanks to the 0-round technique we are able to build for the first
time a 2-round structure on Craft, which is additionally the first time a 2-
round structure for a differential MitM attack is build for a construction having
a key-addition in the whole state. This allows to improves the best known attacks
on Craft [5] by three rounds (Section 4).

We also improve the best known attack by Lallemand and Rasoolzadeh [21]
on Pride [2] (Section 5), and we show how a step of the best attack on Serpent
from Broll et al [12] could be done more efficiently, which allows to slightly
improve the time complexity of the attack needing the lower data complexity on
the highest number of rounds (Section 6).

2 Preliminaries

Notation Besides standard notation, we use |A| not only to denote the cardinality
of the set A, but also |a| to denote the length of the vector a. The concrete
meaning will be clear from the context.

2.1 Description of Ciphers

Let us briefly describe the two main ciphers used throughout this work in our
applications: Craft and Pride. The block cipher Serpent is also used, but as we
present its detailed application in Supplementary Material B, we also introduce
the cipher in that same section.

Craft Craft [5] is a 64-bit tweakable AES-like block cipher using a 128-bit
key. Its state is represented as a 4×4 matrix of 4-bit values, and its round function
consists of a column wise linear transformation, referred to by Mix-Columns
(MC), the addition of a round constant and a round (tweak-)key, followed by
a permutation of the cells (PN) and a cell-wise application of the s-box (SB).
More specifically, MC corresponds to the matrix

1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 ,
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and PN to the permutation [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0]. Both
these transformations are involutions. This function is iterated 32 times with
different round constants and round keys, but the last round ends after the
addition of the round constants. As we consider the tweak to be zero, the round
keys are derived by splitting the 128-bit key into two 64-bit values K0 and K1

and alternating between them. More details can be found in [5].

Pride Pride is a 20-round lightweight block cipher introduced at Crypto 2014
in [2]. The cipher operates on block of size 64-bit with a 128-bit key k = k0||k1.
One half of the key, k0 is used as a pre-whitening and post-whitening key and
we derive 19 subkey from the other half k1. For the 19 first rounds, the round
function consists of the following operations : A subkey addition; an s-box layer
applying an s-box on each nibble of the state; and a Linear layer, consisting in
the application of a bit permutations P , then the application of matrices and
the application of P−1.

The subkey Ki in round i, 1 ≤ i ≤ 20 is given by Ki = P−1(fi(k1)), with
fi(k1) is:

f(k1) = k10 ||g(0)i (k11)||k12 ||g(1)i (k13)||k14 ||g(2)i (k15)||k16 ||g(3)i (k17),
where k1i is byte number i of k1 and the gi functions are given by:

g
(0)
i (x) =(x+ 193i) mod 256, g

(1)
i (x) =(x+ 165i) mod 256

g
(2)
i (x) =(x+ 81i) mod 256, g

(3)
i (x) =(x+ 197i) mod 256

2.2 Brief Description of Differential Families of Attacks

In the following section, we consider an n-bit cipher E decomposed into three
sub-ciphers Eout ◦ Em ◦ Ein of rin, rm and rout rounds respectively. We denote
by K the key of size k-bit. Further, we consider a (truncated) differential dis-
tinguisher ∆in → ∆out covering the rm middle rounds of probability 2−p for
differential and differential Meet-in-the-Middle cryptanalysis, and of probability
0 for impossible-differential cryptanalysis. Then, we extend the differential dis-
tinguisher for rin rounds backward and for rout rounds forward with probability
1. This propagation implies two sets of differences Din and Dout for the plain-
texts and ciphertexts differences respectively. We use the same simplified cost
analysis than the attacks we are comparing to in the applications section.

Differential Attacks Differential cryptanalysis, introduced in 1990 by Biham
and Shamir [7], is one of the most well known family of symmetric attacks and
has been used to study the resistance of many ciphers since then. The goal of
differential cryptanalysis is to exploit the high probability of the propagation of
specific differences through some rounds of the cipher. The scheme of the attack
is summarized on Fig. 1a. In this paper, we will refer to a bit with a non-zero
difference as an active bit. Then a differential key recovery consists of mainly
three steps :
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Din Ein ∆in

Em

∆out Eout Dout

1 1

2−|Din| 2−|Dout|

rin rm rout

2−p

(a) Differential

P

P̂

Ein ∆in

Em

∆out Eout

C

Ĉ

rin rm rout

2−p

(b) (Truncated-)differential MitM

Fig. 1: Scheme of attacks

– Pair generation: we build structures consisting of sets of plaintexts having
their differences in Din. To build them, we fix the inactive bits to a certain
value and take all the possible values for the bits in Din. The number of
pairs we compute is such that the right key is suggested about a times.

– Pair sieving: we only keep the pairs such that their corresponding cipher-
texts have a difference in Dout.

– Key guessing phase: we want to generate candidate tuples (P ,P̂ ,C,Ĉ,kin∪
kout) that imply the differences ∆in and ∆out. To find those candidates, we
make some key guesses kin and kout and verify if the transition through the
active s-boxes is possible. Then we can either directly perform an exhaustive
search for each candidates or first use a counter to keep only the candidates
that verify a threshold, as we detail later.

(Truncate-)Differential MitM Attacks The differential Meet-in-the-Middle
(MitM) technique, introduced in [8], is a new type of cryptanalysis combining two
significant families of symmetric attacks: the Meet-in-the-Middle attack and the
differential attack. The core idea of the attack involves employing the MitM ap-
proach to compute the pairs (P,C, P̂ , Ĉ) verifying the differential distinguisher.
In other words, given a pair of plaintext/ciphertext (P , C), we independently
compute the candidate plaintext and ciphertext P̂ and Ĉ such that they imply
the input/output differences of the distinguisher as summarized on Fig. 1b. P̂
is computed from the plaintext P and the difference ∆in for each possible value
of the associated key kin, and Ĉ from the ciphertext C and the difference ∆out

for each possible value of the associated key kout.
We have to repeat the procedure 2p times using 2p different pairs of plain-

text/ciphertext so that we can expect to find a pair satisfying the distinguisher.

Complexity In the case that we need to guess the remaining bits of the master
key, specifically if |kin|+ |kout|−n−|kin∩kout|+p > 0, the total time complexity
would be:

T = 2p+|kin∩kout| (cin + cout + cin · cout · 2−n
)
+ 2k−n+p,

where cin = 2|kin|−|kin∩kout| and cout = 2|kout|−|kin∩kout|.

The data complexity is D = min(2n, 2p+min(|kin|,|kout|)), and the memory com-
plexity is M = min(cin, cout).
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Truncated-Differential MitM Attacks Differential MitM attacks have later been
extended to truncated-differential MitM attacks [1]. The general idea is the same,
but the computation of P̂ and Ĉ is done for all differences contained in the
corresponding set of differences. With this, the time complexity becomes

T = 2p−|δin|+|kin∩kout| (cin + cout + cin · cout · 2−n
)
+ 2k−n+p,

where cin = 2|δin|+|kin|−|kin∩kout| and cout = 2|δout|+|kout|−|kin∩kout|.

The data complexity is D = min(2n, 2p+min(|kin|+|δin|,|kout|+|δout|)), and the mem-
ory complexity isM = min(cin, cout).

Impossible-Differential Attacks Impossible-differential was independently
introduced in [20] and [7] in 1998 and 1999 respectively. As in differential at-
tacks, the idea is to exploit a statistical property of the propagation of specific
differences thorough some rounds of the cipher. But contrary to classical differ-
ential cryptanalysis, the differential is of probability zero.

We denote by cin, kin and cout, kout, the number of bit-conditions to be ver-
ified and the key bits involved to obtain ∆in and ∆out respectively. Thus the
probability that for a given key, a pair of plaintext/ciphertext in Din and Dout

satisfy the cin + cout conditions is 2−(cin+cout). Since the probability for a trial
key to be kept using N different pairs is P = (1 − 2−(cin+cout))N , N should be
chosen such that N ≤ 2cin+cout . Furthermore, the naive approach is to test for
each candidate key if one of the N pairs lead to the impossible differential and
if it is the case we discard the candidate key. Then we test the expected 2kP
candidates key left with a new plaintext/ciphertext pair. Thus the time com-
plexity is T = (CN + (N2|kin∪kout|)C ′

E + 2kP )CE , where CE is the cost of an
encryption, CN is the cost in data to compute the N pairs and C ′

E is the ratio
of the cost of partial encryption to the full encryption. The second term of the
complexity correspond to the cost of filtering the candidate keys.

2.3 State-Test Technique History

In [10], the state-test technique was introduced in the context of impossible-
differential attacks. It was applied in particular to two Feistel ciphers: Clefia [24]
and Camellia [3]. The technique allowed to reduce the number of total involved
key bits to guess in the key-recovery phase. In order to do that, the authors
proposed guessing the value of a part of the state, of size s bits, smaller than
the size of the involved key bits in that state (denoted by kst). If s < kst the
time complexity can be potentially reduced. For the impossible-differential to
work, the authors needed to fix the values of some plaintext bits, in order to
associate each guess of the state to a unique partition of the candidate keys: in an
impossible-differential attack, this was the only way information on the key could
be discarded so that the attack worked 1. Later, in a paper improving differential
1 Otherwise the discarded key belongs to a different set each time, where the sets are

non-disjoint, and this does not allow to efficiently combine the information for only
keeping the potentially correct keys.
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MitM attacks [1], the authors proposed to use the technique to improve some
attacks. The application here seemed more natural and easier, given that in these
applications, the guessed states did not need to determine disjoint partitions, but
just implied additional information on the secret key bits in the form of a non-
linear equation, and the challenge became to efficiently use this information by
solving a system of equations to recover the whole key in the end.

Impossible Differential The state-test technique was first introduced in [10]
in the context of impossible-differential key-recovery attacks. Thanks to this
technique the authors managed to find some of the best known attacks at the
time on several Feistel ciphers such as Clefia-128 [24] or the different instances
of the cipher Camellia [3].

The idea in this context is to fix the bits of the plaintext involved to compute
the part of the internal state we are interested in, so that it will create a partition
of the involved key bits depending only in the value of the guessed internal state.
This way, by guessing s bits of the internal state and fixing the involved plaintext
part, the size of the key information guessed is reduced by s bits. Indeed, if X
is an s-bit guess of the internal state using the state-test technique then X can
be written as an equation over the (still) unknown key bits and depending on
plaintext bits and known key bits. We can rewrite this equation by putting on
the left side, the terms that we can compute and on the right side the terms
we can not compute, depending non linearly on the unknown key bits and the
plaintext bits then if for a fixed value of the already guessed key candidate, the
left part of the equation can take all the possible 2s values that means that any
choice of the unknown key bits implies the impossible differential and thus can
be discarded. Hence the technique can be useful to decrease the time complexity
of the filtering phase since the size of the internal state needed is often smaller
than the number of the key bits it depends on. The downside here is that since
we fix part of the plaintexts, the data available to perform the attack is smaller.

Differential MitM The state-test technique has also been used in differential
Meet-in-the-Middle attacks: in [1], the authors applied the state-test technique
on two SPN ciphers Skinny [4] and Craft [5].

The technique was used to reduce the number of candidates by lowering
the number of key information needed to know if a pair follows the differential
path. The idea here seems more natural than in the impossible-differential case
since we don’t need to fix part of the plaintexts. Instead, for each set of partial
candidates formed by tuples of data and key information and for the guess of s
bits of internal state, we try all the 2s possibilities for the internal state which
gives 2s times more candidates. Thus if the internal state depends on more than
s bits of the key then the number of candidates in a set is reduced. The difficulty
with this method can arise in the last step of the attack, when we want to recover
the full key with the equations given by the guess of internal states, merging both
partial sets of solutions including to efficiently solving a system of equations given
by the values of the guess of the internal state. This can be challenging if the
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number of final candidates is close to the full exhaustive search. In the case of
Craft, the authors used a precomputation table to store the solutions of some
of the equations. Another possible limitation seen in the case of Skinny for
example, is that the state-test technique might allow less sieving regarding the
linear relations between the subkey bits given by the upper and lower parts of
the attack and by the key schedule to reduce the number of candidates, which
could be a problem during the matching of candidates of the upper and lower
parts in differential Meet-in-the-Middle cryptanalysis.

3 New Insights and Applications for the State-Test
Technique

In this section we will identify and define, for the first time, on which type of
ciphers and situations the state-test can potentially improve the time complexity
of the attacks. We will also introduce three new applications of the state-test
technique: an interesting extension of differential MitM attacks thanks to state-
test and probabilistic extension, the case of classical differential attacks and
differential-linear attacks. Thought it seems very difficult to provide a generic
algorithmic framework, we will present the particularities of each scenario, and
we will see later in the applications some examples of concrete scenarios and
attacks. In the classical differential attacks case, we will also discuss the different
settings that can arise and how to deal with the state-test equations in each.

3.1 Ciphers on which the State-Test Technique Can Improve the
Attacks

On a high level, the state-test technique can be applied whenever a part of
some internal state required to be known in the key-guessing phase of an attack
depends on a bigger part of the key that would not be guessed otherwise. This
is quite broad and in order to say more about the applicability of this technique
we need to specify some details of the attack.

Hence, let us assume that given a pair of data, we want to detect the keys
that would imply that a certain differential occurs at some point during the
encryption process. Without loss of generality, we assume that we start from the
plaintext side.

For simplicity, let us assume that, given a pair of inputs (X0, X1), the key-
guessing part requires us to verify if a difference δ appears after two rounds
of an SPN, as depicted in Fig. 2. First, we propagate δ backwards, recording
the differences that can appear at each step in the sets ∆Y , ∆Z , see Fig. 2.
Obviously, ∆Y = L−1(∆Z). Next, we want to know the difference Y0 + Y1 =
S0(X0 +K0) + S0(X1 +K0). But this equation is equivalent to

X0 +X1 = S
−1

0 (S0(X0 +K0) + Y0 + Y1) +X0 +K0,

where the left-hand side is known. In many cases, the right-hand side does not
depend on the full key K0 if we fix the difference Y0 + Y1 to be contained in
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S1 W0

X1

K0

S0 Y1 L Z1

K1

S1 W1

δ∆Z∆Y

Fig. 2: Verifying a difference δ after two rounds of an SPN. The Si are s-box
layers, while L is a linear layer and ∆X , ∆Y , ∆Z are a probability-one truncated
differential backwards extension of δ

∆Y (so that δ holds).2 Since the part of the key K0 it depends on might include
linear combinations and not only include direct bits of K0, let us denote the
information needed by the set of masks ΓX , such that the inner product with
these masks corresponds to those linear combinations. Hence, after guessing the
bits of K0 defined by ΓX we are either able to compute the difference Y0 + Y1,
or can conclude that Y0 + Y1 /∈ ∆Y , discarding the pair. Let us assume that
Y0 + Y1 ∈ ∆Y . Knowing this difference trivially implies knowing Z0 + Z1, and
we can similarly compute the masks ΓZ that correspond to the bits of Z0 (and
therefore K1) that need to be known to verify that W0 +W1 = δ. To see which
information of Y0 those masks translate to, we simply apply the transpose of
L, i.e., ΓY = LT (ΓZ) defines the bits of Y0 we need to know. We now need to
traverse these masks through the s-box layer S0,3 and denote the corresponding
masks by Γ ′

X . If Γ ′
X ̸⊆ ΓX , meaning that we need additional information from

K0 in order to verify W0 + W1 = δ (compared to computing the difference
Y0 + Y1), we can (potentially) apply the state-test technique in order to reduce
the number of overall guesses needed.

Note that it is enough to consider two consecutive rounds at a time, as Γ ′
X ⊆

ΓX is invariant under traversing both sets through additional rounds. While this
shows that the state-test technique has a great potential to be applied to many
ciphers, the discussion also shows that if a cipher uses an orthogonal linear layer
L, i.e., L−1 = LT , and if the whole word of each active s-box needs to be known
in order to verify the associated difference,4 the state-test technique cannot be
applied in this setting. However, the probabilistic key-recovery technique might
be a way around this, as we discuss below.

2 There is a straight-forward relation of this to the boomerang-connectivity table [13]:
if the entries at (α, δ) are 2n for all δ ∈ ∆Y the equation above is invariant under the
addition of α to the key K0, meaning that we do not need to know the associated bit.
The easiest instance of this is when some s-boxes are differentially inactive, causing
all such BCT entries to be 2n if α is active in those s-boxes only.

3 This could be done using linear structures, where the difference again corresponds
to the bit that has no (or only a liner) influence on Y0.

4 If this is the case for all differences, it is equivalent to the boomerang uniformity [13]
being lower than 2n.
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Feistel ciphers While the discussion above is focused on SPNs, the state-test
technique can similarly apply to Feistel ciphers as well: the arguments above
easily translate if the non-linear part of the Feistel cipher applies multiple s-
boxes in parallel. Indeed, if we need to know the input bits of an s-box that
depend on the output bits of some s-boxes round(s) before that were not needed
otherwise then we are once more in the a scenario where the state-test technique
might help to improve the time complexity of the attack.

On probabilistic key-recoveries In the case where the differential is not propa-
gated with probability one, but in a probabilistic manner, as in [9,1], we artifi-
cially restrict the differences in the set ∆Z , reducing the size of the set ΓX in the
process. Aside from that, the same argument can be applied. Note that this can
be a way to apply the state-test technique to a cipher where it is not possible
otherwise.

3.2 New Applications of the State-Test Technique

In this subsection, we present three new scenarios of application for the state-test
techniques.

Enabling 0-Round Distinguishers As we will see in Section 4, combining
the state-test technique with the probabilistic key recovery technique [9,1,26],
where a fraction of 2−p initial candidates will survive the key-guessing part only,
can allow us to reduce the number of rounds rm covered by the distinguisher
to zero without increasing the number of candidates. In essence, we show that
for the attack on Craft in [1] the amount of state-test guesses is in equilib-
rium to the survival rate (i.e., s = p), allowing us to convert any number of
rounds of the distinguisher (rm) into rounds covered by key/state-test guesses
(rin or rout). While this means that we can get more state-test equations for
free compared to [1], the equations tend to get more complex the deeper we go
into the encryption/decryption process. It is therefore unclear if those additional
equations can help to recover the full key efficiently in the last step of the at-
tack. The most interesting part comes if we are able to reduce rm to 0: in this
case we are able to partially compute the same parts of the middle states from
both sides, which we can use for additional filtering during the matching phase.
We use these idea in Section 4, and combining this observation with additional
extensions and optimizations allows us to attack up to three more rounds than
previous attacks.

Classical Differential The state-test technique has not been used in the con-
text of classical differential attacks until our present results. There are mainly
two possible scenarios, whether the attack needs to use counters or not. It is
worth pointing out that the application on the scenario not needing a counter
has similarities with the application on differential MitM attacks, and the one
with counter has similarities with the impossible-differential scenario:
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Without needing a counter. The first scenario considers attacks that do not need
a counter for key candidates, as the final number of tuple-candidates determining
a part of the key is small enough to fully determine the whole key efficiently.
In this case, the procedure to recover the information is more straightforward
and similar to the scenario of differential MitM attacks. Here, each word guessed
by the state-test technique can be seen as one word of information on the key.
Thus, in the end of the filtering phase, the set of candidates is smaller than the
exhaustive search of all the information bits we have recovered.

Note here that we do not need to fix any plaintext bits in order to form par-
titions of the key space (as it is the case on impossible-differential attacks), since
here the information on the key can be directly exploited. The same happened
with differential MitM attacks: though there were groups of triplets with a com-
mon plaintext, this is not needed nor exploited in the attack, and the equations
can just be treated as independent information on potential candidates.

The aim of the final step will be to find a way of recovering the whole key using
all this information, which implies efficiently solving the system of equations
given by the state-tests while having a minimum impact on the time complexity
(and for this a priori we do not need to fix any values in the plaintexts). In
Section 3.3, we discuss a bit more how to solve these equations.

With a counter. In the second scenario, we need a counter to perform the
attack. This is the case, for example, when the set of candidates we recover is
not smaller than the number of key bits we have determined or when the limit
for the security of the cipher is the product of the data and time complexities
and thus we can not test all the remaining candidates.

This situation is a bit similar to the impossible-differential attacks as we
might fix part of the plaintexts to generate a partition of the key, that can be
included in the counter. Indeed by fixing the same bits to a given value for all of
the plaintexts used the attack, the guess of the s-bit internal state X partition
the set of the involved key bits into disjoint sets. Thus a wrong guess of X should
appears with probability 2−s and the counter of the associated key candidate
will be incremented less often than for a good guess of X. However, we need to
be careful as we need to take into account the following problems:

1. Firstly the equations without fixing bits can not be used in the counter as
they do not generate a partition. But those equations can still be useful since
they form an over defined system of equations which has a solution for the
good guess of the key and no solution otherwise. In subsection 5, we use this
method to propose an improved attack on 18 rounds of Pride.

2. Secondly, in some cases, for the good candidate key, the guess of the internal
state might have given as candidate a pair that seems to follow the differential
path but induce a wrong guess of the unknown key bits involved in the
equation. This is to be carefully verified when it would introduce a wrong
equation in the correct system (correct guess for the information on the
counter). We need to carefully process those noise equations. This is also
considered in subsection 5.
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Differential-Linear In this scenario, the techniques apply the same way as for
differential attacks. See Section 6 for an example.

3.3 Solving the State-test Equations

Whenever we make a state-test guess, this guess defines an equation in plain- and
ciphertext, as well as in the key. Hence, for a tuple of partial key guesses, state-
test guesses and associated plain- and ciphertexts, we can use such equations
to either find inconsistencies, allowing to filter out such tuples, or to solve the
system for the still unknown part of the key. If there are a few unknowns only,
solving them can be done by a simple guess-and-determine strategy. However,
the deeper into the cipher the state-test guess is performed, the more complex
the equations tend to get.

One approach to solve such more complex equations has been recently pro-
posed in the context of differential MitM attacks [1]: they recovered 2 sets of
candidates for some bits of the key and associated state-test equations, that
needed to be merged efficiently in order to recover a unique set of key candi-
dates that could be efficiently tested. Several lists merging techniques, like the
ones from [22] combined with clever partial parallel guessing of some of the
variables allowed to reduce the complexity. Also, if multiple candidates lead to
the same equations, it is possible to precompute the solutions of those equa-
tions once, but the solution will work for multiple candidates at the same time,
ultimately reducing the solving cost. This is also done in the 23-round attack
on Craft [1]: the candidates are grouped by the equations they define, mean-
ing that the equations need to be solved only once for the whole group. The
equations are then solved individually, yielding lists of solutions, which are then
merged to get solutions that satisfy all equations at once.

While this is certainly not the only possible approach – for instance, a
substitution-based approach seems to produce promising results as well – we
seem to lack generic tools to make full use of the state-test equation’s potential.
This will become especially apparent in our attacks on Craft: despite having
around 20 such equations we make (efficient) use of at most 6 of them. While
we don’t expect equations for a guess deep inside a cipher to be easily solvable,
it would still be interesting to see by how much better solving techniques could
improve existing attacks, or enable new ones in the first place.

4 From 23 to up to 26 Rounds of Craft

Considering a differential MitM attack and using the 0-round distinguisher tech-
nique presented in the previous section, we obtain a filter that allows us to add,
for the first time, a two-round structure on Craft. Thanks to this, we here
present the first attacks against 25 and 26 rounds of Craft (whose specifi-
cations are given in Section 2.1). It is worth noting that, due to the concrete
construction of Craft, the 0-round distinguisher technique works particularly
well, as in each internal round only one new word needs to be guessed to verify
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the differential path, and the probability of verifying the path compensates this
guess, which is an ideal scenario for freely adding the additional filtering.

In essence, both attacks are based on the 23-round truncated-differential
Meet-in-the-Middle attack presented at Eurocrypt’24 [1], which is among the
best known ones at the time of writing, and use at the core the same iterative
truncated differential distinguisher represented in Fig. 3. The previous attack on
23 rounds combined an 11-round differential with 6 upper and 5 lower proba-
bilistic extension rounds, plus a final round covered by an initial structure. In
our attacks, we will have a 0-round distinguisher, 2 final rounds covered by an
initial structure that we will detail here, and the remaining ones associated to
probabilistic key-recovery.

The overall procedure is similar for both attacks. We start by explaining the
25-round attack in detail and then specify the differences of the 26-round one.

4.1 An Attack on 25 Rounds of Craft

As the 23-round attack from [1] uses a truncated differential characteristic of
alternating truncated differences, we can trivially extend this characteristic by
one additional round, see Fig. 3. As in the previous attack, we apply the state-
test technique to reduce the amount of key material kin and kout that needs to
be guessed when computing P̂ and Ĉ, respectively. We will denote by sin the
amount of state-test bits guessed in the upper part, and by sout in the lower
part. Additionally, we apply a probabilistic key-recovery technique similar to [1],
meaning that our computations of P̂ and Ĉ require some internal differences
to be zero, which happens with probability 2−pin and 2−pout , respectively, but
allows us to have less key material involved.

In fact, the probabilistic key-recovery technique forces the differences that are
traced during the key-guessing steps to correspond to the truncated differences
in the characteristic of the distinguisher. Additionally, the probabilistic transi-
tion in the key-guessing step happens with probability 2−4 for each round where
it is applied, while each round where the state-test technique is used leads to
guessing a 4-bits value. Hence, we can convert an arbitrary number of rounds
of the distinguisher into key-guessing rounds, which decreases the probability of
the key-guessing part by a factor of 24, while increasing the probability of the
distinguisher by the same factor, but also requires an additional 4-bit of state-
test guesses. As a result, the number of candidates stays the same as can be seen
in the time complexity of the matching phase

T = 2p+pin+pout−|δin|+|kin∩kout| (cin + cout + cin · cout · 2−f
)
,

with cin = 2|δin|+|kin|−|kin∩kout|+sin−pin , cout = 2|δout|+|kout|−|kin∩kout|+sout−pout ,
and f corresponds to the amount of filtering that will be done through the
structure and, additionally in our attack, through the middle conditions of the
0-round distinguisher technique. This procedure corresponds to the 23-round
core of our attack, which is depicted in Fig. 3. Note that the cut between the
upper and lower parts can be arbitrarily chosen, and will mainly change the
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Fig. 3: Core of the 25-round attack on Craft. Green indicates that the values
are known, while orange indicates the state-test guesses. Red and blue indicate
the differential propagation in the upper and lower parts, respectively, as well as
the guesses parts from the key. The light blue nibbles in K22 indicate that their
XOR is guessed. Two rounds will be added with an structure in the end.

shape of the state-test equations. For the sake of simplicity, we chose it such
that the probabilistic key-recovery and state-test guesses happen only in the
upper part.
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As alluded to earlier, reducing rm to zero with this configuration means that
the values at positions W20[3, 4, 8] and X21[4, 8, 12] from Fig. 3, as well as the
differences in W20[12] and X21[3] are known both from the upper computation
and from the lower one. More precisely, if we denote the pairs by (W20, Ŵ20) and
(X21, X̂21), respectively, and the s-box of Craft by S, we get that the following
conditions need to be verified when matching the upper and lower parts:

S(W20[3]) + S(Ŵ20[3]) = X21[3] + X̂21[3]

W20[12] + Ŵ20[12] = S−1(X21[12]) + S−1(X̂21[12])

S(W20[4]) = X21[4] S(Ŵ20[4]) = X̂21[4]

S(W20[8]) = X21[8] S(Ŵ20[8]) = X̂21[8].

This implies a 24-bit filter. In addition, when building the candidates for the
upper and lower parts we can organize them by the values of δin = δout, given by
the differences in the 4 nibbles X21[3, 4, 8] and W20[12], to reduce the memory
needs. The factors 2δin = 216 and 2δout = 216 are then common to both the
first and second terms in the parenthesis and can be taken out from the time
complexity. Additionally, the third term is reduced by a factor 2δin+δout with
respect to the previous complexities. As we are already ensuring the match of
the middle difference, the 24-bit middle filter reduces to a 8-bit filter based on
the values that need to match in X21[4, 8] from both sides. Let us record this by
fdist = 8. With this, the time complexity of the matching phase becomes

T = 2p+pin+pout+|kin∩kout| (cin + cout + cin · cout · 2−f−fdist
)
,

where cin = 2|kin|−|kin∩kout|+sin−pin , cout = 2|kout|−|kin∩kout|+sout−pout ,

where we have split the original f into fdist and f to better keep track of the
amount of filtering.

It should be noted that a naive computation of P̂ from P could require us
to make all the state-test guesses before we can start filtering by checking if the
pair follows the (truncated) differential characteristic. However, this can easily
be avoided by using rebound-like techniques, as it was already suggested in [8],
and as we explain in more detail in Supplementary Material A.1. In the end,
this has no (significant) impact on the complexity of the attack.

Adding Two Rounds using Structures Like previous attacks, we extend the
core part of the attack by adding some rounds covered with initial structures.
While previous attacks on Craft only used structures covering one round, we
manage here to build an efficient two-round one. Previously, two round structures
for differential MitM attacks had only been built in the case of partial key-
additions, and only covered one round for full state key additions [1].

A structure in differential MitM attacks will allow to build a set of states
of size 2S < 2n in its input (or end of the lower part) and a set of states in its
output (or ciphertext) of the same size, such that, depending on the key, there is
a perfect correspondence between one element in the first set with one element in
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Fig. 4: Two-round structure of the 25-round attack on Craft. Red and blue
key nibbles indicate known values from the upper and lower parts, respectively,
while lighter colors indicate that a linear relation between them is known. For the
state, the diagonally-striped (blue) nibbles indicate the continued propagation of
the difference from the lower part, while the horizontally- and vertically-striped
nibbles (red) indicate that their respective differences are identical. K indicates
that the nibble can be computed by the part of the corresponding color (and
correspond to the structure), while F indicates that the nibbles are fixed within
the structure. A black D indicates that the difference in this nibble can be
computed from both sides, while a red D indicates that the nibble is known
from the upper part (and used to compute said difference).

the second. Using structures can sometimes not increase the complexity despite
adding more rounds, as this 2S cost can be absorbed by the number of data we
need to use, related to the probability of the core part. The important question
next is how much we can filter then in the matching phase, in order to efficiently
determine the candidate keys.

In contrast to [1], we extend the core of our attack by adding a two-round
structure (compared to one round) at the ciphertext side. For convenience, let
us move the key addition of these two rounds right before and right after the
s-box layer, as depicted in Fig. 4. We are omitting some linear layers in this
representation (while we take them into account in the equivalent key addition)
that will be taken into account for computing the ciphertexts, but that will not
affect the following reasoning, so we leave them out for the sake of simplicity.
Besides the needed keys from each side seen in Fig. 3, we additionally guess the
key nibbles K0[8, 9] during the upper part and K1[5] during the lower part of
the attack, which will provide an additional filtering for matching both parts, as
the key K0[13] will become determined, as we have K0[1, 9] and the difference
K0[1] +K0[9] +K0[13] at that point, allowing for additional filtering using the
difference W23[13] + Ŵ23[13] after the matching phase.

Like in [1], we will choose some words to fix, that allow to link determined
values on each side so that the size of the structure is smaller than 264 and
can be used efficiently. For this, we fix W23[9] and Z ′

24[1, 6, 10] (marked with
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an F in Fig. 4) to a chosen value. This corresponds to knowing the values of
Y ′
23[1, 6, 9, 10] within the lower part and those of Z ′

24[1, 6, 9, 10] within the upper
part, as the needed nibbles of the key have been guessed before in the respective
parts.

As explained in [1], and with 4 fixed nibbles, we denote the size of the struc-
ture by S = n − 4 · 4 = 48, this gives us a filter of fS = n − S bits during the
matching phase, which corresponds to the fixed parts that can be verified for P̂
and Ĉ.

Furthermore, we can compute the difference in Y ′
23 in the 3 nibbles marked by

D solely based on information available in the upper and lower parts, respectively,
meaning that we get an additional filter of fD = 12 bits. Additionally, we can see
that the difference of the lower part leads to no difference in the white nibbles of
Z ′
24, which gives us an additional filter of fZD = 16 bits. Notably, this filter can

be applied directly in the upper part, potentially reducing memory complexity.
Since the overall probability of the core of our attack is 2−19·4 = 2−76 and

since the number of pairs we are able to construct is 2(2·4+12)·4 = 280, we can
additionally fix one of the white nibbles of Z ′

24 (e.g., to zero) and still expect one
right pair on average. Since fixing z = 4 bits in the upper part implies decreasing
the probability of the matching by 2z, we need to repeat the attack an additional
2z times. However, as this also reduces the number of candidates cin by the same
factor, it effectively increases cout only. Additionally, this implies that 4 bits of
the ciphertext are fixed during the whole attack, reducing the data complexity
to 260.

Additional Matching using Differentials To further filter the candidates
during the matching phase, we realize that the differences at positions Y ′

23[2, 9, 12]
(and Y ′

23[3, 8, 13]) all come from a single active word, so they have to be the same
(as indicated by the horizontal and vertical stripes in Fig. 4). From the upper
part we can compute the difference at Y ′

23[8, 9], which means that, on average, at
most half of the differences in each of the 4 nibbles Z ′

24[2, 3, 12, 13] are possible.
This gives us an additional filter of fID = 4 bits. Similarly to the filter based
on the inactive nibbles of Z ′

24, this filter is independent of the lower part and
can therefore be applied in the upper part directly, potentially reducing memory
complexity.

Complexity We record the parameters of our attack in Table 2. With this, the
time complexity of all the previous steps is

T = I ·
(
cin + cout + cin · cout · 2−f

)
≈ 2117.58, where

I = 2p+pin+pout+|kin∩kout|−|S|+z = 260, cout = 2|S|+|kout|−|kin∩kout|+sout−pout = 256,

cin = 2|S|+|kin|−|kin∩kout|+sin−pin−z = 256, f = fS + fZD + fD + fID + fdist = 56,

while I · cin · cout · 2−f = 260+56+56−56 = 2116 candidates survive the matching.
Further, the data complexity is 260 by fixing one of the nibbles Z ′

24[0, 4, 5, 11]
(e.g., Z ′

24[0] = 0) during the whole attack (as explained above). However, while
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the memory complexity would usually corresponds to min(cin · 2−16−4, cout) =
236, the data reduction trick requires us to store plain- and ciphertexts in order
to prevent an encryption query that results in a ciphertext outside of those of
interest (i.e., Z ′

24[0] ̸= 0). To solve this, from each given ciphertext, we request
and store the decryption of the 248 associated ciphertexts that have 0 difference
at the four nibbles without difference (and additionally have one of them fixed
to a 4-bit value for all the ciphertexts). This allows us to encrypt during the
upper part of the precedure using a simple lookup, while limiting the data to 260

with a memory of 248. If the lookup fails, we know that the current candidate
is not of interest and can be discarded, which is identical to filtering for the 4
differences in Z ′

24 to be zero.
While we still need to recover the whole key, this can be done without in-

creasing the complexity, as we will see next. With that, a pseudo-code for the
whole attack is given in Supplementary Material A.2 for the interested reader.

Recovering the Remaining Part of the Key After matching the candidates
from the upper and lower parts, we still need to recover the part of the key that
we have not guessed. For this, we can make use of the equations we get from the
state-test guesses and the two round structure. Starting with the structure, we
note that we get equations of the form

X24[i] + k′i = S(W23[i] + ki) and X̂24[i] + k′i = S(Ŵ23[i] + ki)

for all the blue nibbles in Fig. 4, while we get a single equation X24[i] + k′i =
S(W23[i]+ki) for each of the remaining four. Hence, we can solve equations of the
form S(W23[i]+ki)+S(Ŵ23[i]+ki) = X24[i]+ X̂24[i] nibble-wise by considering
which input pairs (W23[i] + ki, Ŵ23[i] + ki) lead to difference X24[i] + X̂24[i]. As
we can assume the difference X24[i] + X̂24[i] to be uniformly distributed, and
since the average number of keys satisfying such an equation is one (where the
average is taken over this difference), we expect one solution for ki.

However, we already used 4 of these differences for the matching phase, mean-
ing that we now expect 2 solutions for them on average. But as mentioned above,
we can first use W23[13] +W ′

23[13] to have an additional filter of 2−4. In other
words, the amortized time complexity (over the number of candidates) of this
step matches the number of candidates. As knowing ki trivially gives k′i by using
one of the equations above, the only unknown values of the key are K0[0, 4, 5, 11]
and K1[7, 9, 10, 15] at this point of the attack, since they correspond to the nib-
bles of the structure without a difference. Still, we have four single equations of
the form X24[i] + k′i = S(W23[i] + ki) relating each unknown key nibble of K0 to
one of K1.

rin rm rout p pin pout sin sout |kin| |kout| |kin ∩ kout| |S| fS fZD fD fID fdist z

21 0 2 0 76 0 76 0 40 36 28 48 16 16 12 4 8 4
Table 2: Parameters of our 25-round attack on Craft
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Additionally, we can make use of the equations that result from our state-test
guesses and the fact that we know the values of X21[3] and W20[12]. The most
important ones are the following four:

W1[14] = K1[3] + S(K0[0] +X0[0] +X0[12] +X0[8]) + S(K0[14] +X0[14]) +
S(K0[7] +X0[15] +X0[7])

W2[12] = K0[1] + S(K1[12] + S(K0[1] +X0[1] +X0[13] +X0[9])) + S(K1[2] +
S(K0[13] +X0[13]) + S(K0[3] +X0[11] +X0[15] +X0[3]) + S(K0[4] +
C0[0] +X0[12] +X0[4])) + S(K1[5] + C1[1] + S(K0[2] +X0[10] +
X0[14] +X0[2]) + S(K0[9] +X0[9]))

W3[14] = K1[3] + S(K0[0] + S(K1[1] + S(K0[12] +X0[12]) + S(K0[2] +X0[10] +
X0[14] +X0[2]) + S(K0[5] + C0[1] +X0[13] +X0[5])) + S(K1[15] +
S(K0[0] +X0[0] +X0[12] +X0[8])) + S(K1[6] + S(K0[3] +X0[11] +
X0[15] +X0[3]) + S(K0[8] +X0[8]))) + S(K0[14] + S(G[0])) + S(K0[7] +
S(K1[0] + S(K0[1] +X0[1] +X0[13] +X0[9]) + S(K0[15] +X0[15]) +
S(K0[6] +X0[14] +X0[6])) + S(K1[11] + S(K0[7] +X0[15] +X0[7])))

W20[12] = K0[1] +K0[13] +K0[9] + S(K1[10] +K1[14] +K1[2] + S(K0[11] +
K0[15]+K0[3]+W22[0]+W22[14]+W22[7])+S(K0[12]+K0[4]+C22[0]+
W22[1]+W22[10])+S(K0[13]+W22[2]))+S(K1[12]+S(K0[1]+K0[13]+
K0[9] +W22[12] +W22[2] +W22[5])) + S(K1[13] +K1[5] + C21[1] +
S(K0[10]+K0[14]+K0[2]+W22[13]+W22[3]+W22[4])+S(K0[9]+W22[5]))

As can be seen, the first two equations contain one unknown key nibble
(purple) only. Hence, we immediately get K0[0, 4], and therefore K1[10, 15], from
the state-test guesses. With this, the other two equations give K0[5, 11], and thus
also K1[7, 9]. In other words, we have recovered the whole key.

While the remaining state-test equations can be used to further filter the
candidates at various points of this step, it is easy to see that the average time
and memory complexity is at most one for each candidate. In other words, fur-
ther improvements in the recovery of the remaining part of the key have no
(significant) effect on the complexity of the attack.

4.2 An Attack on 26 Rounds of Craft

Our 26-round attack on Craft works in a similar way. We give the core of the
attack, based on the same iterative distinguisher as the previous ones, but with
one round added at the ciphertext side, in Supplementary Material A.3 and the
two-round added structure in Fig. 5. For the upper part, we guess in addition to
the key words needed in the core scheme, the word K1[0], and for the lower part
the word K0[2]. Since pin + p + pout − δin = 80 + 0 + 0 − 16 = 64, this attack
requires the whole code-book. We therefore cannot fix part of the ciphertexts
during the attack to apply the data reduction technique. But this also means
that we do not need to store the plain- and ciphertexts, as we can simply assume
oracle access to the en- and decryption functions.
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Fig. 5: Two-round structure of the 26-round attack on Craft. Red and blue
key nibbles indicate known values from the upper and lower parts, respectively,
while lighter colors indicate that a linear relation between them is known. For the
state, the diagonally-striped (blue) nibbles indicate the continued propagation of
the difference from the lower part, the horizontal-striped (red) ones indicate that
the difference in these nibbles is identical (due to MC; only depicting those used
in the attack). K indicates that the nibble can be computed by the part of the
corresponding color, F indicates that the nibbles are fixed within the structure.

rin rm rout p pin pout sin sout |kin| |kout| |kin ∩ kout| |S| fS fZD fD fID fdist z

22 0 2 0 80 0 80 0 36 36 24 40 24 16 0 2 8 0
Table 3: Parameters of our 26-round attack on Craft

We can see in the figure that we have an structure of size 2S = 264−24, as we
fix Y ′

24[0, 4, 8, 12], Z ′
25[13] and Z ′

25[3]+Z ′
25[11]+Z ′

25[15] (marked by F in Fig. 5).
We can similarly apply the 16-bit filter due to the 4 words without difference to
the upper part. Here, as in the previous attack, we can also filter the candidates
in the upper part based on the (known) difference in Y ′

24[0], which needs to be
identical to the ones in Y ′

24[11] and Y ′
24[14] (striped in red). As this implies that

(at most) half of the differences in Z ′
25[11] and Z ′

25[14] are possible, this gives us
an additional filter of 2−2.

We record the parameters of this attack in Table 3. Similar to the previous
attack, the complexity so far is

T = I
(
cin + cout + cin · cout · 2−f

)
≈ 2118, where

I = 2p+pin+pout+|kin∩kout|−|S| = 264, cout = 2|S|+|kout|−|kin∩kout|+sout−pout = 252,

cin = 2|S|+|kin|−|kin∩kout|+sin−pin = 252, f = fS + fZD + fD + fID + fdist = 50,

which corresponds to the number of candidates. The data complexity is the whole
code book, and the memory complexity will be min(cin · 2−16−2, cout) = 234.

The remaining of the key can again be recovered with an average complexity
of at most 1 per candidate, by making use of the state-test equations and the
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structure, similar to before. We provide the full details on this in Supplementary
Material A.4.

4.3 An Attack on 23 and 24 Rounds of Craft

As summarized in Table 1, we can mount an attack on 23 and 24 rounds of
Craft by removing two rounds in the core attack of the 25 Fig. 4 and 26-
round Fig. 6 attacks respectively, and using the same procedure. This way, the
probability of the differential path increase of a factor 28 for each attack and
thus the time complexity decreases of the same factor. Moreover, we will use the
data reduction technique originally proposed in [8] as it does not increase the
time complexity.

5 Improved Cryptanalysis of Pride

In this section, we provide a new application of the state-test technique on the
block cipher Pride (described in section 2.1). The best known attack so far is
a classical differential attack [21], reaching 18 rounds. Other attacks have been
published [28,27] though they were shown to be incorrect in [21]. No improved
results on Pride have appeared in the last 8 years.

We have applied the state-test technique to improve the previous best attack,
allowing to improve the time complexity (or slightly the data complexity in
another trade-off). This application, besides improving the best known attack
on Pride up to date, gives the first application using the state-test technique in
the classical differential setting using counters.

5.1 Previous best known attack

In [21], the authors proposed a differential attack on 18 rounds of Pride. They
use the following 1-round iterative differential characteristic given in hexadecimal
value : 0000 0008 0000 0008. The distinguisher is an iteration of this character-
istic for 14 rounds and has a probability of 2−56. The distinguisher covers from
round 3 to round 17 and is extended for two rounds in the backward and for-
ward directions, as shown in Table 4. The time, data and memory complexities
of their attack are T = 263.3 Pride encryptions, D = 261 chosen plaintexts and
M = 235 64-bit blocks. In the rest of this subsection, as the first steps of our
attack are the same as in [21], we give the outline of their attack.

Output/input difference of 8 in a Pride s-box We describe here a property used
in their attack that will also have an impact in our analysis. As shown in [21], the
s-box of Pride has an interesting property when the input or output is 8. Indeed,
there are 4 possible input differences to get an output difference of 8: 2, 3, 8, a.
We denote the bits of a nibble as x1x2x3x4, where x1 is the most significant bit.
For each input difference, we have the following possible pairs of values :

– Input difference of 2 : {(0000); (0010)} and {(1000); (1010)}.
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– Input differences of 3 : {(0100); (0111)} and {(1100); (1111)}.
– Input differences of 8 : {(0110); (1110)} and {(0101); (1101)}.
– Input differences of a : {(0001); (1011)} and {(1001); (0011)}.

Thus, in every case, we get a condition on the value of the bit x2 and in the
case of an input difference of 2 and a the value of the least significant bit is fixed.
Otherwise, if the value of the least significant bit is fixed, then the value of the
bit x3 is determined, thus we get a condition on the bit x3.

Generating pairs We need to estimate the number of pairs needed to obtain
about a pairs that will follow the differential path. We see in Table 4 that after
the backward propagation of the difference δin with probability 1, there are 7
active nibbles in round 1. Therefore, a structure contains 228 different plaintexts
and can form 228+28−1 = 255 different pairs. There are 236 possible structures,
thus we can compute 236+55 = 291 pairs. Out of the 291 pairs, a proportion of
2−28 will be partially encrypted to δin for the correct key. In total, to have a
pairs that verify the first two rounds and also follow the differential path, we
need to construct around a256+28 = 284 pairs. For this, we build a284−55 = a ·229
structures. In [21], they choose a = 24.

Pre-sieving To limit the memory complexity, the authors pre-compute the pos-
sible differences in the plaintexts and ciphertexts that can lead to ∆in and ∆out.
They found that there are 217.38 possible ∆P and 219.93 ∆C. Hence, out of the
a · 284 pairs, only a · 284(217.38 · 2−27)(219.93 · 2−64) = a · 229.31 can lead to the
distinguisher. Thus, instead of storing the counters for the keys, the authors
proposed to store the a · 229.31 pairs so we need to save a · 231.3164-bit blocks.

Filtering candidates For each of the a · 229.31 pairs, we do the following oper-
ations, while we keep a counter of the guessed key bits to check the ones that
have more appearances 5. In the following attack, the authors compare the time
5 As for Pride the product of time and data complexity must not be bigger than 2128,

all the candidate pairs can not be tested in the end because the product would be
too high, and a counter for just keeping the values with most occurrences is needed.

∆P = ∆X1 000000000000???? ???? ???? 0000???? ???? 00000000???? 000000000000????
∆Y1 000000000000?00? 00?0 00?0 0000?00? 00?0 00000000?00? 000000000000?0??
∆Z1 000? 000? 000? 000? 00000000000000000000??00 ?000 000? 000? 000? 000? 000?
∆W1 0000000? 0000000? 0000000000000000000? 0000000? 00000000000? 0000000?

∆I2 = ∆X2 0000000000000000000000000000?0?? 0000000000000000000000000000?0??
∆Y2 0000000000000000000000000000100000000000000000000000000000001000
· · · · · ·

∆I17 = ∆X17 0000000000000000000000000000100000000000000000000000000000001000
∆Y17 0000000000000000000000000000?0?? 0000000000000000000000000000?0??
∆Z17 0000000? 0000000? 0000000000000000000? 0000000? 00000000000? 0000000?
∆W17 000? 000? 000? 000? 0000000000000000?0?? 0000?00? 000? 000? 000? 000? 000?

∆I18 = ∆X18 00?0 000000?0 ?0?? 000000000000?00? 00?0 00000000?0?? 000000000000?0??
∆Y18 = ∆C ???? 0000???? ???? 000000000000???? ???? 00000000???? 000000000000????

Table 4: Differential path of the 14-round characteristic.
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complexity of each operation to a Pride encryption consisting of 18 · 16 = 28.17

s-box computations. Thus they consider a factor 2−8.17 when comparing the
complexity to one Pride encryption.

1. First we guess K0[1, 3, 4, 8, 9, 12, 16] and filter the candidates through the
active s-boxes at round 18. There are now a ·229.31 ·16 ·2−19.93 ·228 = a ·241.38
candidates for 28 bits of the key.

2. Then we filter the candidates to verify the transitions in round 1. Guess
K0 ⊕ K1[4, 5, 6, 8, 9, 12, 16] and obtain a · 241.38 · 16 · 2−17.38 · 228 = a · 256
candidates for 56 bits of the key.

3. Now we need to filter through the s-boxes at round 2 and 17. Thanks to the
key schedule we already know K2[8],K2[16],K17[8], K17[16] and can compute
the most and least significant bits of X2[8] , X2[16] , Y17[8] and Y17[16].
In [21], they guess (K0 ⊕ K1)

2,3,4[1], (K0 ⊕ K1)
2,3,4[1] to compute X2

2 [8],
and X2

2 [16]. The time complexity of this operation is @ · a · 256+62−8.17 =
a · 263−8.17 = a · 254.83 Pride encryptions.

4. The authors remark that all the bits to compute X3
2 [8]⊕X3

2 [16] are known.
Thus we have a 1-bit filter without guessing more bits. Then to compute
X3

2 [8], guess (K0⊕K1)[15]. It filters one more bit and gives a260+4−2 = a262

candidates. The cost of this is 267−8.17 = 258.83 Pride encryptions.
5. At this point, they have 266 candidates for 66 key bits. The wrong keys should

appear on average only one time while the right pair should be suggested
24 times. Since the counter for a wrong key follows a binomial distribution
B(266, 2−66), by only keeping the key candidates that appear at least 14
times, the probability that a wrong candidate is suggested enough times is
2−37.7 thus they keep 266−37.7 = 228.3 candidates.

6. Then they guess 3 more bits to compute Y 2
17[8] with a complexity of 228.3+3−8.17 =

223.13 Pride encryption and they guess 7 bits to compute Y 2
17[16] for a time

complexity of 230.3+7−8.17 = 229.13 Pride encryption.
7. Finally, they filter again the candidates and obtain 211.3 candidates for 76

key bits. Then, the exhaustive search cost 211.3+52 = 263.3 Pride encryptions.
This is the bottleneck of the time complexity.

Moreover as all the active bits of the differential path are not computed, the
authors choose a equal to 24 to filter more candidates. The filtering phase of the
attack is not the bottleneck of the time complexity.

The final complexities are: D = 261, T = 263.3 for the exhaustive search and
M = 235 64-bit blocks. Thus the product of the data and time complexities is
D × T = 261 × 263.3 = 2123.3

5.2 Overview: using state-test equations for reducing the guesses

We can notice that in rounds 2 and 17, for computing the necessary bits to verify
the distinguisher, namely X2

2 [8, 16], X3
2 [8, 16], Y 2

17[8, 16] and Y 3
17[8, 16] given in

the subsection 5.3, we need to guess 36 bits of the subkeys that are still unknown
after guessing the bits needed to compute the first and last rounds, which con-
siderably increases the complexity. Instead, we can use the state-test technique
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to improve the attack. First by fixing some bits of the plaintexts which will im-
prove the signal to noise ratio of the counter as it will allow to use some of the
state-test equations to define partitions of the key as in impossible-differential
attacks, that can be included in the determined part regarding the number of
occurrences. Next, after filtering the candidates with regard to the counter, we
can use the remaining state-test equations to recover more information on the
key and further reduce the number of remaining candidates.

5.3 State-test equations from Pride

We give here the 8 state-test equations that we will consider in our attack. P
and C are the plaintexts and ciphertexts respectively. And the states I,Y and
X, as shown in 4, are the states before applying the round function, the states
after the s-box layer and after the addition of the round key respectively. The
still unknown bits of the key are in purple.

Equations on round 2:
X2

2 [8] = K2
2 [8]⊕ Y 2

1 [8]⊕ P 4[1]⊕ (K0 ⊕K1)
4[1]⊕ P 4[11]⊕ (K0 ⊕K1)

4[11]⊕ (P 2[1]⊕
(K0 ⊕K1)

2[1])(P 3[1]⊕ (K0 ⊕K1)
3[1])⊕ (P 2[11]⊕ (K0 ⊕K1)

2[11])(P 3[11]⊕
(K0 ⊕K1)

3[11]).

X3
2 [8] = K3

2 [8]⊕ Y 3
1 [4]⊕ Y 3

1 [5]⊕ SB(P 1[15]⊕ (K0 ⊕K1)
1[15], P 2[15]⊕

(K0 ⊕K1)
2[15], P 3[15]⊕ (K0 ⊕K1)

3[15], P 4[15]⊕ (K0 ⊕K1)
4[15])3.

X2
2 [16] = K2

2 [16]⊕ Y 2
1 [8]⊕ Y 2

1 [12]⊕ P 4[11]⊕ (K0 ⊕K1)
4[11]⊕ (P 2[11]⊕

(K0 ⊕K1)
2[11])(P 3[11]⊕ (K0 ⊕K1)

3[11]).

X3
2 [16] = K3

2 [8]⊕ Y 3
1 [4]⊕ Y 3

1 [16]⊕ SB(P 1[15]⊕ (K0 ⊕K1)
1[15], P 2[15]⊕

(K0 ⊕K1)
2[15], P 3[15]⊕ (K0 ⊕K1)

3[15], P 4[15]⊕ (K0 ⊕K1)
4[15])3.

Equations on round 17:
Y 2
17[8] = C4[6]⊕ C4[7]⊕ C4[14]⊕ (C2[6]⊕K2

0 [6])(C
3[6]⊕K3

0 [6])⊕ (C2[7]⊕
K2

0 [7])(C
3[7]⊕K3

0 [7])⊕ (C2[14]⊕K2
0 [14])(C

3[14]⊕K3
0 [14])⊕K4

0 [6]⊕
K4

0 [7]⊕K4
0 [14]⊕K2

18[6]⊕K2
18[7]⊕K2

18[14].

Y 3
17[8] = I318[3]⊕ SB(C1[2]⊕K1

0 [2], C
2[2]⊕K2

0 [2], C
3[2]⊕K3

0 [2], C
4[2]⊕

K4
0 [2])

3 ⊕ SB(C1[10]⊕K1
0 [10], C

2[10]⊕K2
0 [10], C

3[10]⊕
K3

0 [10], C
4[10]⊕K4

0 [10])
3 ⊕K3

18[2]⊕K3
18[3]⊕K3

18[10].

Y 2
17[16] = I218[3]⊕ I218[12]⊕ C4[11]⊕ (C2[11]⊕K2

0 [11])(C
3[11]⊕K3

0 [11])⊕
K4

0 [11]⊕K2
18[3]⊕K2

18[11]⊕K2
18[12].

Y 3
17[16] = I318[16]⊕K3

18[16]⊕ SB(C1[7]⊕K1
0 [7], C

2[7]⊕K2
0 [7], C

3[7]⊕
K3

0 [7], C
4[7]⊕K4

0 [7])
3 ⊕ SB(C1[15]⊕K1

0 [15], C
2[15]⊕K2

0 [15], C
3[15]⊕

K3
0 [15], C

4[15]⊕K4
0 [15])

3 ⊕K3
18[7]⊕K3

18[15].

5.4 How to consider some state-test equations in the counter

In this subsection, we explain how to build partitions thanks to state-test equa-
tions so that this information can be included in the counter. Since we make a
guess on the value of the bit of the internal state, we cannot use this bit of infor-
mation in the key counter directly. To take the state-test equations into account
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in the counter, we use a similar idea as in [10]: that is to fix some part of the
plaintexts to obtain a partition of the key. Equations on s bits of the internal
state can be separated in two parts, one part involving the value of the state and
known bits of the key and the plaintext, and another part involving κ unknown
bits of the key and y bits of the plaintext on which the equation depends on
non-linearly. If we fix those y bits then for a guess of the internal state and a
given candidate, only 2κ−s solutions are left for the κ bits of the key. That means
that the probability for a wrong candidate key with state-test equations on s bits
of internal state to reach the differential distinguisher decreases by a factor 2−s,
and the guesses of the internal bits given by state-test equations define disjoint
partitions of the key space that can be treated as key bits of information.

However, since we are fixing bits of the plaintexts, we are limited by the data
needed to perform the attack. As such we can not use all the equations given
by the state-test in the counter, as we can not fix enough bits in the plaintexts
(we wouldn’t have enough data). Fortunately, the rest of the equations defines a
system of equations which, for the good key guess, gives the correct solution. As
we expect to find several occurrences verifying the distinguisher for the counter of
the correct guess, considering all the associated equations together form a much
bigger and overdetermined system of equations, that will only have a solution
for the correct value of the counter. In addition of allowing us to filter the bad
key counters, this system of equations allows us to recover more key bits. For
a wrong key guess, the equations of the overdetermined system are uniformly
distributed and we can verify that the system is not consistent. The probability
that a system of x equations over k key bits, for a wrong key candidate, has a
solution is 2x−n. In our case, this will be to × (8− np), where np is the number
of equations already used for defining partitions, and to is the expected number
of occurrences in the counter. It is easy to intuitively see how this probability
can be quite low, and allows to filter many additional bad key candidates.

5.5 How to deal with the bad candidates

For the good key candidate of the counter, it could happen that we recover a
tuple of associated data and key guess with incorrect values for the state-test
equations that incorrectly seems to lead to the differential path. This would
be translated in one incorrect equation among the overall system of correct
equations previously discussed. The probability of this is very low, as for the
correct key guess, leading to the differential probability through the external
rounds without verifying the differential happens on average with less than the
inverse of the numbers of pairs considered. In our attack, we consider we have
at most one incorrect equation in the overall system, and we will try to solve all
the subsystems when erasing one different equation at the time. We will also see
that this won’t affect the bottleneck of the complexity, as when we arrive at this
step, the remaining number of candidates is already considerately reduced.
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5.6 How to deal with bad equations for good values of the counter

As seen with the property of the s-box of Pride, for a difference of 2 or a, the bit
in position x3 can take two possible values to reach the distinguisher. This means
that after filtering the candidates, the same equation can appears two times but
with two different values. Obviously only one of the 2 related equations can be
correct and associated to the correct key. We will call this "double equations",
in opposition to the rest that will be "single equations".

In our attack, for the good key, this happens for half of the occurrences (lets
call the number of double equations nd). In this case, for solving the correct final
system, we need to consider all the 2nd possible systems that consider all the
possible configurations formed by choosing one out of the two double equations
for all of them. If we keep the key candidates that appear in the counter at
least t times, then on average we will have t

2 "single" equations and t
2 "double"

equations. Thus, if we also consider the previous paragraph, on average for each
considered candidate in the counter we need to try to solve around t

22
t
2 +( t4 )2

t−1
2

systems to find the one leading to the correct key. The first term is associated
with erasing a single equation because of a bad candidate and trying all the
possibilities for the double equations, and the second is associated with erasing
a double equation and trying all the possibilities for the remaining ones. This
complexity is usually small and does not increase the complexity of the attack,
as it is applied after a first sieving of candidates through the counter.

5.7 Step-by-step scheme of the attack

Our attack on 18 rounds of Pride uses the same path as the previous one. We
use the state-test technique to increase the signal to noise ratio and improve the
attack. As in [21], the time complexity will be counted in function of the cost of
a Pride encryption. In the following paragraph, we give the steps of our attack
depending on the number of equations used directly in the counter:

1. First, we fix m bits of the plaintexts or ciphertexts that are part of the
equations of the value of np bits of the 8 internal state bits from 5.3 and
involve kp subkey bits. This way we have a partition of 2kp−np disjoint sets of
the kp subkey bits depending of the guessed values of the np bits of internal
states. Thus those np bits distinguish the right key from the wrong keys and
we have np bits of key information taken into account in the counter. We can
also remark that the number m of plaintext or ciphertext bits fixed depends
on the data available, here m ≤ 64− (57 + log2(a)).

2. We build a · 229 structures of 255 pairs of plaintexts or ciphertexts each.
3. Then the next 3 steps of our attack are done the same way as the first 3 steps

of the previous attack. Thus, to limit the memory complexity, we store the
a · 229.31 pairs with possible differences instead of the counters for the keys
so we need to save a · 231.31 64-bit. And we filter the candidates at round 18
and 1 by guessing K0[1, 3, 4, 8, 9, 12, 16] and K0 ⊕K1[4, 5, 6, 8, 9, 12, 16]. We
obtain a ·256 candidates for 56+np bits of key information. Those steps cost
at most a · 253.63 Pride encryptions.
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4. We filter through the active s-boxes of round 2 and 17. Thanks to the key
schedule we already know K2[8],K2[16],K17[8] and K17[16], and we can com-
pute the most and least significant bits of X2[8] , X2[16] , Y17[8] and Y17[16].
First, since X3

2 [8]⊕X3
2 [16] depend only on known bits, we can compute its

value and filter half of the candidates. We have now a · 255 candidates for
56 + np bits of key information.
The idea of the following steps is to guess all the key bits needed to compute
some of the active bits of round 2 and 17 and filter out some of the candidates
to improve the signal to noise ratio.

5. Thus we guess ks subkey bits determining s bits of the internal state. We
have now a · 255+ks−s candidates for 56 + np + ks bits of key information.
The bottleneck of the time complexity of this step is a · 255+ks−s+1 · 2−8.17.
At this point, The counters of the wrong key guesses follow a binomial distri-
bution B(a · 255+ks−s, 2−56−np−ks) while the counter of the right key follows
the binomial distribution B(a · 256, 2−56) thus a wrong key is supposed to be
suggested about λ = a · 255+ks−s−(56+np+ks) = a · 2−1−s−np times while the
right key is suggested about a times.

6. By keeping the keys that are suggested at least t times, we reduce the number
of candidates we handle by a factor Pt which is the probability for a wrong
pair to be suggested at least t times. As we can approximate a binomial
distribution of parameter n, p (B(n, p)) as a Poisson distribution of parameter
np then Pt = 1 − e−λ

∑t
k=0

λk

k! and the probability of success of the attack
is Ps = 1− e−a

∑t
k=0

ak

k! . Since λ = a · 2−1−s−np , we remark that the higher
s and np, the lower Pt is. Moreover, Pt also decreases if we take a higher
threshold t. However the probability of success also decreases as t increases
above a. There is a trade-off between the threshold t of the counters and a,
the number of times the good key is expected to be suggested.
Now, we have a · 255+ks−s · Pt = 2κ candidate keys to test.

7. We still have no = 8− np − 1− s equations over ko subkey bits to use. For
each remaining candidates, the no equations of the internal states appear
at least t times so we recover a system of t · no equations which is often an
overdetermined system. As explained in subsection 5.6, we need to solve the
system while taking into account the potential bad candidates. Moreover the
probability for a wrong key to have a solution is 2ko−t·no . Thus we expect
to keep 2κ+ko−t·no candidates and recover ko more bits of the key.

8. The last step consists of an exhaustive search on the rest of the key. It is
done in Texhaustive = 2κ+72−np−ks−ko Pride encryptions.

5.8 Optimal parameters and final complexity

We have tried different configurations of the different parameters and the differ-
ent discussed steps, and the best complexity is given by considering Table 5. We
therefore build 24229 structures of size 228. We take into account the equation
of Y 2

17[16] in the counter, by fixing the bits C2[11] and C3[11], which defines a
partition for the key bits K2

0 [11],K
3
0 [11] and K4

0 [11]⊕K2
18[3]⊕K2

18[11]⊕K2
18[12].
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Objective a m np kp s ks no ko t Pt

Time 24 2 1 3 3 10 3 23 13 2−46.2

Data 9 2 1 3 3 16 3 17 9 2−35.30

Table 5: Best time/data complexity parameters of our 18-round attack on Pride

Thus at the end of step 6, we keep 266 · 2−46.2 = 219.80 key candidates for 67
bits of key information. We still have the state-test equations of the bits Y 2

17[8],
Y 3
17[8] and Y 3

17[16] and as explained in subsection 5.6, for half of the equations
of Y 3

17[8] and Y 3
17[16], we have two double equations. Thus we have to solve

the systems of equations by trying all the possible values for those "double"
equations.

We can do this with a complexity of (10 × 23)2 × 219.80 ≈ 212.64 · 219.80 =
232.44 operations and we can discard one of the double equations since both
can not be right. Moreover, the probability for a wrong key to have a solution
is 223−2×10−13 = 2−10 since we have a system of 2 × 10 + 13 equations in 23
variables. Thus we expect to keep 10× 219.80−7 = 216.12 candidates and we have
recovered 23 more bits of the key. Thus the time complexity of the exhaustive
search is Texhaustive = 216.12+38 = 254.12. In the end, the data complexity of our
attack is D = 261 with a time complexity of 257.83 which is the bottleneck of our
attack and a memory complexity of 235 to store the candidates.

Moreover some trade offs can be made by using the other equations before
filtering the candidates to have a better signal to noise ratio and to have a data
complexity slightly smaller, but a bigger time complexity. For example if we
fix the plaintexts bits of the state Y 2

17[16] and we guess the bits of the states
X3

2 [8], X
3
2 [16], X

2
2 [16] and Y 3

17[8], the parameters are given in Table 5. And the
exhaustive search becomes the bottleneck of the time complexity with a cost of
T = 265.86 Pride encryptions, the data complexity is D = 260.17 and the memory
complexity is 234 to store the candidates.

6 Application on the 12-round attack on Serpent

In this section, we give a summary of the improvements of the key recovery of
the differential part of the attack in [11] on the block cipher Serpent. The details
of the procedure are given in Supplementary Material B.

6.1 Summary

In the differential path of the attack in [11], some active bits need the values
of inactive bits to be computed. Thus the authors used the properties of the
s-boxes and binary decision trees as proposed in [12] to optimize the amount
of key bits guessed and improve the naive approach to the key recovery part of
their original attack. Those techniques mainly helped to find the smartest way to
guess the needed key bits and reduced the overall guess of the key information
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in the differential key recovery part. Our idea was thus to use the state-test
technique to only guess the bits needed, to compare it with the decision trees
technique. For the attack with the best time complexity, we need to guess 11
bits less than in the original attack reducing the time complexity of the key
recovery part (being therefore to perform better than the previous technique for
this part) but not the overall time complexity of the attack as the bottleneck
is the final exhaustive search. For the attack with the best data complexity, we
need to guess 12 bits less than in the original attack and this time it improves
the time complexity of a factor 22.93.

7 Conclusion

As we have seen, the state-test technique has many applications. Not only can
it be applied in the context of (truncated-)differential MitM and impossible-
differential cryptanalysis, but also to other scenarios. While it can be more
complicated to apply it to some families of attacks, as it can be the case for
differential attacks with a counter, we were able to show examples where its ap-
plication leads to significantly better complexities, and even increase the number
of rounds covered.
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Supplementary Material

A More Details on the Attacks on Craft

A.1 How to Handle the State-Test Guesses

In a naive approach we would need to make 19 state-test guesses (for the 25-
round attack) in order to compute P̂ = E−1

in (Ein(P ) + δ) from P and for a
difference δ. While the probabilistic key-guessing approach ultimately leads to
this not affecting the number of candidates, we would need to make all the
guesses during the computation of Ein(P ), and would only be able to apply the
filter we get from the probabilistic key-recovery approach during the application
of E−1

in . As this would lead to a time complexity worse than brute-force, we use
a different approach.

The basic idea is that only part of the state is involved in the calculation of
the difference P + P̂ : starting at W1, we are only interested in the green and
orange nibbles W1[1, 6, 10, 14]. So, instead of first computing Ein and then E−1

in ,
we can create a list of all pairs (W1[1, 6, 10, 14], Ŵ1[1, 6, 10, 14]), of which there
are 232 only, and propagate them through Ein. In each round, we first filter
those pairs that do not yield the right difference after MC and then add all
possible choices for the state-test guess. Note that in the last round of Ein we
have no state-test guess, meaning that the number of pairs reduces to 228. Doing
this computation separately for each value of δ allows us to further reduce the
number of pairs to 212.

As we use the keys K0[6, 10, 14] and K1[4, 8, 12] during this computation,
we perform this computation after this part of the key has been determined.
Hence, for each δ and (partial) key K0[6, 10, 14] and K1[4, 8, 12] we can compute
a list of pairs (W1[1, 6, 10, 14], Ŵ1[1, 6, 10, 14]), associated state-test guesses and
values of X21[4, 8] that correspond to the upper part of the attack. Then, given a
plaintext P and a guess of kin we can compute W1[1, 6, 10], look-up all candidates
for W1[14] and Ŵ1[1, 6, 10, 14] and compute P̂ by making use of the difference
(W1 + Ŵ1)[1, 6, 10, 14].

The overall time complexity of computing all these lists is 216+24+32 = 272,
while we need 212 memory to store one of them, meaning that this step has no
significant impact on the complexity of the attack.

A.2 Overview of the 25-round attack

We give the pseudo-code of our 25-round attack in Algorithm 1.

A.3 Core of the 26-Round Attack on Craft

The core of our 26-round attack on Craft is shown in Fig. 6.
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Algorithm 1 Truncated differential Meet-in-the-Middle attack using the state-
test and 0-round distinguisher technique, as well as a 2-round structure
Require: Spaces Kin,Kout,K∩ representing the key information needed in Ein, Eout

and the parts they have in common, respectively, in addition to oracle access
to E and E−1. Further, a set of differences ∆ at the boundary of upper and
lower part and two spaces F and S such that f ∈ F corresponds to the
fixed values of the structure f + S.

for δ ∈ ∆ do ▷ |∆| = 216

for k∩ ∈ K∩ do ▷ |K∩| = 228

Compute a list L that, given W1[1, 6, 10], yields all choices of W1[14],
W ′

1[1, 6, 10, 14], associated state-test guesses and values of X21[4, 8] in compli-
ance with the upper part of the attack.
for f ∈ F do ▷ |F| = 216

Compute Z′
24[9]

Initialize hash table H
for C ∈ f + S s.t. Z′

24[0] = 0 do ▷ 2−4 · |S| = 244

P ← E−1(C)
for kin ∈ Kin \ K∩ do ▷ |Kin \ K∩| = 212

Compute W1[1, 6, 10]
for W1[14], Ŵ1[1, 6, 10, 14], X21[4, 8] and state-test guesses g that
correspond to W1[1, 6, 10] in L do ▷ 212−12 = 1 (avg.)

Compute P̂ and Ĉ ← E(P̂ )
if Ĉ ⊕ C have the 16-bit difference to 0 then ▷ 2−16

α← (W23 + Ŵ23)[8]
β ← (W23 + Ŵ23)[9]
if (W23 + Ŵ23)[3, 13] can both be α then ▷ 2−2

if (W23 + Ŵ23)[2, 12] can both be β then ▷ 2−2

A← (Ẑ′
24[1, 6, 10], Y

′
23[9], (Y

′
23 +

Ŷ ′
23)[8, 14, 15], X21[4, 8])

H[A]← (kin, g, C, Ĉ)
for kout ∈ Kout \ K∩ do ▷ |Kout \ K∩| = 28

Compute Y ′23[1, 6, 10] based on f
for All choices of the remaining 12 nibbles of Y ′23 do ▷ 248

Compute B := (Ẑ′
24[1, 6, 7, 10], (Y

′
23 + Ŷ ′

23)[8, 14, 15], X21[4, 8])
for (kin, g, C, Ĉ) ∈ H(B) do ▷ 2(44+12−16−4)−(16+12+8) = 1 (avg.)

Filter further using the now known value of K24[13] ▷ 2−4

Recover remaining key using structure and state-test equations
if No contradiction found then ▷ 2−4·(23−2−4) = 2−68

Test key using trial decryption
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Fig. 6: Core of the 26-round attack on Craft. Green indicates that the values
are known, while orange indicates the state-test guesses. Red and blue indicate
the differential propagation in the upper and lower parts, respectively. The gray
nibbles in K23 indicate that their difference is guessed.
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A.4 Recovering the Remaining Part of the Key in the 26-Round
Attack

After the matching phase and using the (differentially) active nibbles in the
structure whose difference we did not use for filtering so far to recover all but
the 12 nibbles K0[3, 5, 7, 8, 11, 13] and K1[2, 6, 7, 9, 11, 14] of the key, we continue
using the state-test equations. First, we use the equation

W1[14] = K1[3] + S(K0[0] +X0[0] +X0[12] +X0[8]) + S(K0[14] +X0[14]) +
S(K0[7] +X0[15] +X0[7]),

to recover K0[7], which gives us K1[11] by using the two-round structure. We
can now verify the difference that we formerly just checked to be among the
possible ones to get a filter of 2−3. At this point, the state-test equation

W21[14] = S(K0[14] + S(K1[11] +K1[15] +K1[3] +W23[0] +W23[14] +W23[7]))

consists of known values only, increasing our filter to 2−3−4 = 2−7. Next, we use
one of the remaining differences in the structure to determine K0[3] and K1[14].
As we already used this one for filtering out impossible differences, this decreases
our filter to 2−7+1 = 2−6. Then, we can use the two state-test equations

W2[12] = K0[1] + S(K1[12] + S(K0[1] +X0[1] +X0[13] +X0[9])) + S(K1[2] +
S(K0[13] +X0[13]) + S(K0[3] +X0[11] +X0[15] +X0[3]) + S(K0[4] +
C0[0] +X0[12] +X0[4])) + S(K1[5] + C1[1] + S(K0[2] +X0[10] +
X0[14] +X0[2]) + S(K0[9] +X0[9])),

X22[1] = K0[1]+K0[13]+K0[9]+S(K1[10]+K1[14]+K1[2]+W23[13]+W23[3]+
W23[4])+S(K1[12]+W23[1])+S(K1[13]+K1[5]+C21[1]+W23[2]+W23[9])

and the equation from the structure to guess either K0[13] or K1[2], determine
the other and filter further, increasing our total filter to 2−6+4−8 = 2−10. Next,
we guess either K0[8] or K1[6], determine the other using the structure and use
the state-test equation

W3[14] = K1[3] +S(K0[0] +S(K1[1] +S(K0[12] +X0[12])+S(K0[2] +X0[10] +
X0[14] +X0[2]) + S(K0[5] + C0[1] +X0[13] +X0[5])) + S(K1[15] +
S(K0[0] +X0[0] +X0[12] +X0[8])) + S(K1[6] + S(K0[3] +X0[11] +
X0[15] +X0[3]) + S(K0[8] +X0[8]))) + S(K0[14] + S(G[0])) + S(K0[7] +
S(K1[0] + S(K0[1] +X0[1] +X0[13] +X0[9]) + S(K0[15] +X0[15]) +
S(K0[6] +X0[14] +X0[6])) + S(K1[11] + S(K0[7] +X0[15] +X0[7])))

to recover K0[5], which in turn gives us K1[9] by using the structure and decreases
our total filtering capability to 2−10+4 = 2−6. We can now filter once more using
the state-test equation

W19[14] =
S(K0[14]+S(W21[14]+K1[11]+K1[15]+K1[3]+S(K0[0]+K0[12]+K0[8]+
S(K1[1]+K1[13]+K1[9]+W23[12]+W23[2]+W23[5])+S(K1[14]+K1[6]+
W23[3] +W23[8]) + S(K1[15] +W23[0])) + S(K0[15] +K0[7] + S(K1[0] +
K1[12] +K1[8] +W23[1] +W23[15] +W23[6]) + S(K1[11] +W23[7]))))
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that contains known values only and guess one of the remaining nibbles K0[11]
and K1[7] to recover the other using the structure. In total, this shows that we
can recover the remaining key with a time complexity lower than the number of
candidates, and we can filter even more using the remaining state-test equations.

B Application on the 12-round attack on Serpent

In [11], the authors presented the best known attacks on the cipher Serpent.
Their attack reach 12 rounds of the cipher and they use a differential-linear
distinguisher on 8 rounds that they extend to a partial 10-round distinguisher
with correlation 260.75 as shown on Fig. 7. To lower the information guessed
on the key, they used some conditional linear properties of the s-box in the
differential key recovery part. Those conditions could be used because not all the
output or input of the s-boxes needed to be known. Our idea is to use the state-
test technique in the key recovery part of their attack to reduce furthermore
the time complexity of recovering the candidates. We would like to point out
that further improvements of this attacks using techniques from [16] might be
possible, but we find this to be out of the scope of the paper.

B.1 A brief description of the Serpent cipher

Serpent is a 32-round block cipher introduced in [6] by Anderson, Biham and
Knudsen and was a finalist in the AES competition. The Serpent family operates
on block of size 128 bits with a key of size k, where k ∈ {128, 192, 256}. The
state is a 4 × 32 matrix of bits, in other words the state is organized in four
32-bit words X0, · · · , X3 and we note Xj [i] the i-th leftmost bit of word j. The
round function is composed of the three operations :

– Key mixing. A 128-bit subkey is XORed to the internal state. The subkey
at round i will be denoted by Ki.

– s-box Layer. 32 copies of an s-box is applied to the internal state. The
Serpent cipher use eight different s-boxes at round i, we apply the s-box
S(imod8).

– Linear transformation. The linear operation LT consist of the following
operations :

X0 ← X0 ≪ 13;X2 ← X2 ≪ 3

X1 ← X1 ⊕X0 ⊕X2;X3 ← X3 ⊕X2 ⊕ (X0 ≪ 3)

X1 ← X1 ≪ 1;X3 ← X3 ≪ 7

X0 ← X0 ⊕X1 ⊕X3;X2 ← X2 ⊕X3 ⊕ (X1 ≪ 7)

X0 ← X0 ≪ 5;X2 ← X2 ≪ 22

Here≪ j denotes a j-bit left shift and ≪ j denotes a j-bit left rotation. In round
31 this linear transformation is omitted and an additional subkey is XORed to
the state instead.
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Fig. 7: The differential-linear attack on 12-round Serpent with staggered key-
recovery from [11]. The nibble difference $ is undetermined but is one in the
leftmost bit x3 because of the differential properties of S1. The nibble difference
* is undetermined but is zero in the rightmost bit x0. The nibble difference @
is undetermined but is zero in the rightmost bit x0. The nibble difference # is
undetermined but is zero in the leftmost bit x3.

B.2 The previous 12-round attack

The attack in [11] is based on the same 9-round differential-linear distinguisher
that was used in [14]. As described in Fig. 7, their attack begin a “central” distin-
guisher which starts at round 2 with a 3-round differential of probabilityp = 2−6

with input difference ΩP = 00000000000000000000000040050000x and then ends
with a five-round linear approximation with correlation q = 2−21 with output
mask λC = 00001000000000005000010000100001x. The expected correlation for
the differential-linear distinguisher is thus pq2 = 2−48. However, experiments
with the correlation of the transition rounds between the differential and the
linear trail suggest that the actual correlation should be at least 2−48.75.

In their attacks, the authors partially extend the distinguisher by adding one
round in the differential part and one round in the linear part. The distinguisher
has now a correlation of 260.75 and start at round 1 and finish at round 10. Fig. 7
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Fig. 8: Reducing the required key bit guesses in the first round in the attack of
[11].

give an overview of their attack. We notice that we need to know almost all the
bits of K0 and the bits of K1 in column 17,18 and 31 to verify that the pair
follow the differential distinguisher thus we need to know 132 bits of subkeys.
Moreover with a data complexity of 2127.92, an advantage of 15 bits is obtained
with probability 0.1. Thus we have a data and memory complexities of 2127.92
for a time complexity of 2252.46.

To reduce the complexity of their attack, the authors used the properties of
the s-boxes and used binary decision trees to optimize the amount of key bits
guessed. Indeed, in Fig. 8, we notice that for some column we don’t need to know
the exact value of all the bits of either the input or the output of the s-boxes or
we need to know the exact value of the output of the s-box but the inputs bit
aren’t active, i.e. there is no differences in the output bits of the s-box. Moreover
there is linear conditions in the s-boxes used in Serpent, in particular in S0,
that the authors used to compute some values of the output without needing to
know the whole input. To use those information, the authors, through the binary
decision trees representing the conditions of the s-box, find the least amount of
key information we need to know to be able to compute the values of the bits we
are interested in. Thus the complexity of the attack decreases. The authors also
use conditional proprieties of the s-boxes S2 to improve the overall correlation
by a factor 21.66 and thus improve the linear key recovery since the advantage
increase to 23 by keeping the same data complexity as before. However the
number of active bits in the last round is now 56.

Thus the data and memory complexities of this attack is still 2127.92. In
the naive approach of the attack, we need to know all the bits of K0 and the
bits of K1 in column 17,18 and 31 to verify that the pair follow the differential
distinguisher. Thus we need to guess 128+12 = 140 bits of the two first subkeys.
In Fig. 8, we can see the gain of using conditional relations of the s-box. Thus
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now, the time complexity of the key recovery part is

2140−8−6.83−4.68−2.48−4.32−2.56 · (2123.92−3.5 + 24 · 112 · 2112 · 2−4.17) ≃ 2231.91

equivalent encryptions while the exhaustive search has a cost of 2256−23. The
total time complexity is thus around 2233.55 12-round encryptions.

B.3 Improving with the State-test technique

Our idea is to use the state-test technique to further reduce the amount of key
information we need to guess. As seen in Fig. 8, in column of type a, b and c,
there is no output differences but in column of type b and c we need to know
the exact values of some the output bits to compute the exact values of the
input bits of the s-boxes in column 17, 18 and 31. Thus here instead of using the
conditional relations of the s-boxes, we directly guess the value of the internal
state that we need to know with the state-test technique which decrease the
amount of bits that need to be guessed and we obtain the information on the
subkeys with non-linear equations.

In this improvement, the column of type a, d, e and f will be handled in
the same way as the previous attack and we will have the same gain for those
column. However, we use the state-test technique to guess the following bits of
the columns of type b and c, in round 1 : 1710, 1711, 1712,1713,180, 1811, 3110 and 3112.
Thus instead of guessing the 6× 4 = 24 bits of K0 to know the values of the bit
in column 2,3,10,14,19 and 26 after S0 and the 8 bits of K1, we now guess only
7 bits of the internal states.

With the state-test technique, we obtain the following equations :
Equation 0:

0 = f0 ⊕K68
1 ⊕ SB(X20,21,22,23

0 ⊕K20,21,22,23
0 )3 ⊕ SB(X8,9,10,11

0 ⊕K8,9,10,11
0 )2 ⊕

SB(X32,33,34,35
0 ⊕K32,33,34,35

0 )2 ⊕ SB(X44,45,46,47
0 ⊕K44,45,46,47

0 )1 ⊕
SB(X84,85,86,87

0 ⊕K84,85,86,87
0 )0 ⊕ SB(X120,121,122,123

0 ⊕
K120,121,122,123

0 )0 ⊕ SB(X124,125,126,127
0 ⊕K124,125,126,127

0 )0

Equation 1:

0 = f1 ⊕K69
1 ⊕ SB(X12,13,14,15

0 ⊕K12,13,14,15
0 )0 ⊕ SB(X52,53,54,55

0 ⊕
K52,53,54,55

0 )2 ⊕ SB(X64,65,66,67
0 ⊕K64,65,66,67

0 )1

Equation 2:

0 = f2 ⊕K70
1 ⊕ SB(X16,17,18,19

0 ⊕K16,17,18,19
0 )0 ⊕ SB(X24,25,26,27

0 ⊕
K24,25,26,27

0 )0 ⊕ SB(X64,65,66,67
0 ⊕K64,65,66,67

0 )2 ⊕ SB(X68,69,70,71
0 ⊕

K68,69,70,71
0 )2 ⊕ SB(X76,77,78,79

0 ⊕K76,77,78,79
0 )1 ⊕ SB(X80,81,82,83

0 ⊕
K80,81,82,83

0 )3 ⊕ SB(X96,97,98,99
0 ⊕K96,97,98,99

0 )2

Equation 3:

0 = f3 ⊕K71
1 ⊕ SB(X28,29,30,31

0 ⊕K28,29,30,31
0 )2 ⊕ SB(X40,41,42,43

0 ⊕
K40,41,42,43

0 )3 ⊕ SB(X104,105,106,107
0 ⊕K104,105,106,107

0 )0
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Equation 4:

0 = f4 ⊕K72
1 ⊕ SB(X24,25,26,27

0 ⊕K24,25,26,27
0 )3 ⊕ SB(X12,13,14,15

0 ⊕
K12,13,14,15

0 )2 ⊕ SB(Xj36,37,38,39
0 ⊕K36,37,38,39

0 )2 ⊕ SB(X48,49,50,51
0 ⊕

K48,49,50,51
0 )1 ⊕ SB(X88,89,90,91

0 ⊕K88,89,90,91
0 )0 ⊕ SB(X124,125,126,127

0 ⊕
K124,125,126,127

0 )0 ⊕ SB(X0,1,2,3
0 ⊕K0,1,2,3

0 )0

Equation 5:

0 = f5 ⊕K73
1 ⊕ SB(X16,17,18,19

0 ⊕K16,17,18,19
0 )0 ⊕ SB(X56,57,58,58

0 ⊕
K56,57,58,59

0 )2 ⊕ SB(X68,69,70,71
0 ⊕K68,69,70,71

0 )1

Equation 6:

0 = f6⊕K124
1 ⊕SB(X76,77,78,79

0 ⊕K76,77,78,79
0 )3⊕SB(X88,89,90,91

0 ⊕K88,89,90,91
0 )2⊕

SB(X64,65,66,67
0 ⊕K64,65,66,67

0 )2⊕SB(X100,101,102,103
0 ⊕K100,101,102,103

0 )1⊕
SB(X48,49,50,51

0 ⊕K48,49,50,51
0 )0 ⊕ SB(X52,53,54,55

0 ⊕K52,53,54,55
0 )0

Equation 7:

0 = f7 ⊕K126
1 ⊕ SB(X80,81,82,83

0 ⊕K80,81,82,83
0 )0 ⊕ SB(X120,121,122,123

0 ⊕
K120,121,122,123

0 )2⊕SB(X124,125,126,127
0 ⊕K124,125,126,127

0 )2⊕SB(X4,5,6,7
0 ⊕

K4,5,6,7
0 )1⊕SB(X8.9.10.11

0 ⊕K8,9,10,11
0 )3⊕SB(X24,25,26,27

0 ⊕K24,25,26,27
0 )2

Gain factor In column of type b, only one bit of the output is needed. In column
26, the first output bit is needed to compute the bit 173. In column 14, y3 is
needed to compute 181 and in column 10, y3 is needed to compute 173. In column
of type c, two bits of the output are needed. In column 19, we need the bits y1
and y3 to compute 172 and 310 respectively. In column 3, we need the bits y0 to
compute 171 and 310 and y3 to compute bit 180. In column 2, we need to know
the bits y2 and y3 to compute 170 and 312 respectively. And as in the previous
paper, we can absorb the last bit guess for some of the columns into the next
round. Thus here we have a gain factor of 2−24 since we guess 8 bits instead of
the 6× 4 + 8 = 32 bits to compute those 8 bits without the improvement.

The data and memory complexities don’t change and is equal to 2127.92 and
the time complexity of the key recovery part is now :

2140−8−24−2.48−4.32−2.56 · (2123.92−3.5 + 24 · 112 · 2112 · 2−4.17) ≃ 2219.06.

Improving the time complexity of the attack with the best data complexity In [11],
the authors have presented another attack on Serpent by also determining the
input values of the s-box at column 11 which will reduce the overall correlation
and thus allowing to make the data complexity smaller. In this case there will
then be no conditions imposed in the differences of state # 2 of Fig. 7 which will
increase the active bits in the differential key recovery part. Now there will be one
column of type a (23), three columns of type c (2,3 and 19), three columns of type
e (0, 22, 7 and 8), and four columns of type f (12, 22, 26 and 29). The authors
compute the gain factor the same way as before, and they obtain for column
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29: 2−1.607, column 26: 2−1.192, column 23: 2−4, column 22: 2−1.35, column 19:
2−1.41, column 12: 2−1, column 8: 2−1.678, column 7: 2−1.41, column 3: 2−0.415,
column 2: 2−0.415 and column 0: 2−1.54. for a data and memory complexity of
2118.40, which gives an advantage of 16 bits, we have a time complexity of:

2128+16−16.023 · (2118.4−3.5 + 24 · 104 · 2104 · 2−4.17) + 2256−16 ≃ 2242.93

12-round encryptions.
As before, we can use the state-test technique for the columns of type c to

reduce the amount of key information guessed during the differential key recovery
part. Thus here we guess the bits 110, 170, 171, 172, 180, 310 and 312 which give
a gain of factor 2−12 instead of 2−2.24 for column of type c. And we have a time
complexity of:

2128+16−25.777 · (2118.4−3.5 + 24 · 104 · 2104 · 2−4.17) + 2256−16 ≃ 2240.
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