The State-test Technique on Families of Differential Attacks

Dounia M'Foukh¹, María Naya-Plasencia¹, Patrick Neumann¹

¹Inria Paris

Established by the European Commission

An application on the block cipher PRIDE

Key-recovery attack

Let $E = E_{out} \circ E_m \circ E_{in}$ be a block cipher.

- Find candidate triplets $(P, P', k_{in} \cup k_{out})$ that imply δ_{in} and δ_{out} .
- The time complexity depends in part on the size of kin and kout.

An application on the block cipher PRIDE

Key-recovery attack

Let $E = E_{out} \circ E_m \circ E_{in}$ be a block cipher.

- Find candidate triplets $(P, P', k_{in} \cup k_{out})$ that imply δ_{in} and δ_{out} .
- The time complexity depends in part on the size of k_{in} and k_{out} .

 \rightarrow We want to **minimize** the size of k_{in} and k_{out}

Table of contents

- **1** Introduction to the state-test technique
- **2** Hint on how to deal with the state-test equations
- **③** An application on the block cipher PRIDE

1 Introduction to the state-test technique

Ø Hint on how to deal with the state-test equations

O An application on the block cipher PRIDE

State-test technique

History: Introduced in Meet-in-the-Middle and Impossible Differential attacks [DSP07,BNS14].

State-test technique

History: Introduced in Meet-in-the-Middle and Impossible Differential attacks [DSP07,BNS14]. **Goal:** Lower the time complexity of the key recovery part by guessing internal state bits instead of key bits thus **compacting** the information.

State-test technique

History: Introduced in Meet-in-the-Middle and Impossible Differential attacks [DSP07,BNS14]. **Goal:** Lower the time complexity of the key recovery part by guessing internal state bits instead of key bits thus **compacting** the information.

Where can it be applied?

- 1 Impossible Differential.
- Oifferential Meet-in-the-Middle [AKM⁺24].
- **3** Classical Differential :
 - Case without a counter: Need to solve a system of equations efficiently.
 - Case with a counter: How take into account the information on the key in the counter ?
- **4** Differential Linear.

An application on the block cipher PRIDE 000000

Description of CRAFT

CRAFT [BLMR19], published in ToSC in 2019, is a lightweight tweakable block cipher operating on a 64-bit block, a 128-bit key ($K_0 || K_1$), and a 64-bit tweak T.

And the MixColumn operation is a matrix multiplication by :

$$M = egin{pmatrix} 1 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}.$$

An application on the block cipher PRIDE

A quick example

An application on the block cipher PRIDE

A quick example

- Gives non-linear equations over the key bits,
- Reduces the size of k_{in} and k_{out} .

An application on the block cipher PRIDE

A quick example

- Gives non-linear equations over the key bits,
- Reduces the size of k_{in} and k_{out} .

An application on the block cipher PRIDE 000000

Framework

When is the state-test useful?

For a SPN with a linear layer denoted L.

Γ_{mask} : set of all masks such that ⟨γ, Z_i⟩ is an active bit with respect to δ.
Γ_{diff} : set of differences of Z₀ ⊕ Z₁ giving a difference δ.

$$\implies L^T(\Gamma_{mask}) \not\subset L^{-1}(\Gamma_{diff}).$$

An application on the block cipher PRIDE 000000

Back to our example

For CRAFT, the linear layer L is a matrix multiplication by :

$$M^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \text{ and } M = M^{-1} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Transitions through a Mixcolumn operation:

- 🔲 : words with differences.
- 🖾 : words needed to compute the value of the active word.

An application on the block cipher PRIDE 000000

Back to our example

For CRAFT, the linear layer L is a matrix multiplication by :

$$M^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \text{ and } M = M^{-1} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Transitions through a Mixcolumn operation:

- 🔲 : words with differences.
- 🖾 : words needed to compute the value of the active word.

An application on the block cipher PRIDE 000000

Back to our example

For CRAFT, the linear layer L is a matrix multiplication by :

$$M^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \text{ and } M = M^{-1} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Transitions through a Mixcolumn operation:

- 🔲 : words with differences.
- 🖾 : words needed to compute the value of the active word.

Introduction to the state-test technique

2 Hint on how to deal with the state-test equations

On application on the block cipher PRIDE

An application on the block cipher PRIDE 000000

How to exploit the information: First case

If the number of triplets $(P, P', k_{in} \cup k_{out})$ is lower than the size of $k_{in} \cup k_{out}$.

- For each triplet, we recover a system of equations over the unknown key bits.
- Main idea: Find, in parallel, partial solutions of the system to then find an efficient way to solve the whole system.
 - ~> List merging problems.

$$\begin{cases} a_1 = S(k_1 + S(a_2 + k_0)) + S(S(a_3 + k_0 + S(k_2 + a_4))) \\ a_5 = S(a_2 + k_0 + S(a_3 + k_1)) + S(k_2 + a_4) \\ a_6 = S(k_1 + S(k_2 + a_3 + S(k_3))) + S(a_7 + k_0). \end{cases}$$

An application on the block cipher PRIDE 000000

How to exploit the information: First case

If the number of triplets $(P, P', k_{in} \cup k_{out})$ is lower than the size of $k_{in} \cup k_{out}$.

- For each triplet, we recover a system of equations over the unknown key bits.
- Main idea: Find, in parallel, partial solutions of the system to then find an efficient way to solve the whole system.
 - ~> List merging problems.

$$\begin{cases} a_1 = S(k_1 + S(a_2 + k_0)) + S(S(a_3 + k_0 + S(k_2 + a_4))) \\ a_5 = S(a_2 + k_0 + S(a_3 + k_1)) + S(k_2 + a_4) \\ a_6 = S(k_1 + S(k_2 + a_3 + S(k_3))) + S(a_7 + k_0). \end{cases}$$

An application on the block cipher PRIDE 000000

How to exploit the information: First case

If the number of triplets $(P, P', k_{in} \cup k_{out})$ is lower than the size of $k_{in} \cup k_{out}$.

- For each triplet, we recover a system of equations over the unknown key bits.
- Main idea: Find, in parallel, partial solutions of the system to then find an efficient way to solve the whole system.
 - ~> List merging problems.

$$\begin{cases} a_5 = S(a_2 + k_0 + S(a_3 + k_1)) + S(k_2 + a_4) \\ a_6 = S(k_1 + S(k_2 + a_3 + S(k_3))) + S(a_7 + k_0). \end{cases}$$

An application on the block cipher PRIDE 000000

How to exploit the information: First case

If the number of triplets $(P, P', k_{in} \cup k_{out})$ is lower than the size of $k_{in} \cup k_{out}$.

- For each triplet, we recover a system of equations over the unknown key bits.
- Main idea: Find, in parallel, partial solutions of the system to then find an efficient way to solve the whole system.
 - ~> List merging problems.

$$\begin{cases} a_1 = S(k_1 + S(a_2 + k_0)) + S(S(a_3 + k_0 + S(k_2 + a_4))) \\ a_5 = S(a_2 + k_0 + S(a_3 + k_1)) + S(k_2 + a_4) \\ a_6 = S(k_1 + S(k_2 + a_3 + S(k_3))) + S(a_7 + k_0). \end{cases}$$

An application on the block cipher PRIDE

How to exploit the information: Second case

Greedy Substitution :

- Rewrite some of the equations such as to isolate some of the unknowns as function of others;
- Best case : guess the remaining unknowns and solve the rest of the equations;
- Otherwise : Pre-compute the solutions of the system for the remaining equations.

$$\begin{cases} a_1 = S(k_1 + S(a_2 + k_0)) + S(S(a_3 + k_0 + S(k_2 + a_4)) \\ k_2 = S^{-1}(a_5 + S(a_2 + k_0 + S(a_3 + k_1))) + a_4 \\ a_6 = S(k_1 + S(k_2 + a_3 + S(k_3))) + S(a_7 + k_0). \end{cases}$$

An application on the block cipher PRIDE

How to exploit the information: Second case

Greedy Substitution :

- Rewrite some of the equations such as to isolate some of the unknowns as function of others;
- Best case : guess the remaining unknowns and solve the rest of the equations;
- Otherwise : Pre-compute the solutions of the system for the remaining equations.

$$\begin{cases} a_1 = S(k_1 + S(a_2 + k_0)) + S(S(a_3 + k_0 + S(a_2 + k_0 + S(a_2 + k_0 + S(a_3 + k_1))))) \\ k_2 = S^{-1}(a_5 + S(a_2 + k_0 + S(a_3 + k_1))) + a_4 \\ a_6 = S(k_1 + S(S^{-1}(a_5 + S(a_2 + k_0 + S(a_3 + k_1))) + a_4 + a_3 + S(k_3))) + S(a_7 + k_0). \end{cases}$$

An application on the block cipher PRIDE

How to exploit the information: Second case

Greedy Substitution :

- Rewrite some of the equations such as to isolate some of the unknowns as function of others;
- Best case : guess the remaining unknowns and solve the rest of the equations;
- Otherwise : Pre-compute the solutions of the system for the remaining equations.

$$\begin{cases} a_1 = S(k_1 + S(a_2 + k_0)) + S(S(a_3 + k_0 + S(a_2 + k_0 + S(a_3 + k_1))))) \\ + S(S^{-1}(a_5 + S(a_2 + k_0 + S(a_3 + k_1)))) \\ k_2 = S^{-1}(a_5 + S(a_2 + k_0 + S(a_3 + k_1))) + a_4 \\ k_3 = S^{-1}(S^{-1}(a_6 + S(a_7 + k_0)) + k_1 + a_4 + a_3 + S(S^{-1}(a_5 + S(a_2 + k_0 + S(a_3 + k_1))))). \end{cases}$$

Statistical attack

- Increment the counter of a candidate key blackn it appears.
- The counters follow a binomial distribution.

An application on the block cipher PRIDE 000000

Statistical attack

- Increment the counter of a candidate key blackn it appears.
- The counters follow a binomial distribution.
- Large ratio between the size of k_{in} ∪ k_{out} and the number of candidate triplets → bigger gap between the distribution of the right key from the wrong keys.

An application on the block cipher PRIDE 000000

Statistical attack

- Increment the counter of a candidate key blackn it appears.
- The counters follow a binomial distribution.
- Large ratio between the size of k_{in} ∪ k_{out} and the number of candidate triplets → bigger gap between the distribution of the right key from the wrong keys.

How to exploit the information : Third case

If we need to use a counter.

• Fix part of the plaintext ~>> Form disjoint partition of the key

$$\begin{split} X &= (P_1 \oplus k_1) \cdot (P_2 \oplus k_2) \oplus k_3 \\ \hline (P_1, P_2) &= (0,0) \quad \{(1,0,0), (0,1,0), (0,0,0), (1,1,1)\} \quad \{(1,1,0), (0,1,1), (0,0,1), (1,0,1)\} \\ \hline (P_1, P_2) &= (0,1) \quad \{(1,0,1), (0,1,0), (0,0,0), (1,1,0)\} \quad \{(1,0,0), (0,1,1), (0,0,1), (1,1,1)\} \\ \hline (P_1, P_2) &= (1,0) \quad \{(0,1,1), (0,0,0), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,1), (0,1,1)\} \\ \hline (P_1, P_2) &= (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ \hline \end{pmatrix}$$

If we fix (P_1, P_2) and X is known then k_3 is uniquely determined by the value of k_1 and k_2 . \rightsquigarrow We can take into account the value of X in the counter.

How to exploit the information : Third case

If we need to use a counter.

• Fix part of the plaintext ~> Form disjoint partition of the key

$$X = (P_1 \oplus k_1) \cdot (P_2 \oplus k_2) \oplus k_3$$

$$\frac{X = 0}{(P_1, P_2) = (0,0)} \quad \{(1,0,0), (0,1,0), (0,0,0), (1,1,1)\} \quad \{(1,1,0), (0,1,1), (0,0,1), (1,0,1)\} \\ (P_1, P_2) = (0,1) \quad \{(1,0,1), (0,1,0), (0,0,0), (1,1,0)\} \quad \{(1,0,0), (0,1,1), (0,0,1), (1,1,1)\} \\ (P_1, P_2) = (1,0) \quad \{(0,1,1), (0,0,0), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,1), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(0,1,0), (0,0,1), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,1,1), (0,0,0), (0,1,1)\} \\ (P_1, P_2) = (1,1) \quad \{(1,0,1), (1,0,0), (1,0,0), (1,1,0)\} \quad \{(1,0,1), (1,0,0), (1,0,0), (1,0,0), (1,0,0)\} \\ (P_1, P_2) = (1,1) \quad \{(1,0,1), (1,0,0), (1,$$

If we fix (P_1, P_2) and X is known then k_3 is uniquely determined by the value of k_1 and k_2 . \rightsquigarrow We can take into account the value of X in the counter.

• If we can not fix part of the plaintext/ciphertext → the rest of the equations define an over-determined system.

Introduction to the state-test technique

e Hint on how to deal with the state-test equations

3 An application on the block cipher PRIDE

Introduction to the state-test technique

lint on how to deal with the state-test equations

An application on the block cipher PRIDE

An application

The block cipher PRIDE

PRIDE is a 20-round lightweight block cipher introduced at Crypto 2014 in [ADK⁺14]. The cipher operate on block of size 64-bit with a 128-bit key $k = k_0 ||k_1$. Security claim: Product of Time and Data complexities must be lower than 2^{128} .

Previous best known attack

In [LR18], the authors proposed a differential attack on 18-round PRIDE with the following parameters and properties.

Complexities : Time - Data - Memory

$$\mathscr{T}=2^{63.3}, \mathscr{D}=2^{61}$$
 and $\mathscr{M}=2^{35}.$

Previous best known attack

In [LR18], the authors proposed a differential attack on 18-round PRIDE with the following parameters and properties.

Complexities : Time - Data - Memory

$$\mathscr{T}=2^{63.3}, \mathscr{D}=2^{61}$$
 and $\mathscr{M}=2^{35}.$

The distinguisher

1-round differential characteristic iterated on 14 rounds : 0000 0008 0000 0008 of probability $2^{-56}.$

Steps of the attack

Hint on how to deal with the state-test equations

An application on the block cipher PRIDE

- **Original attack:** The differential path involves 76 bits of the key for 2⁷⁴ candidate triplets.
- **Our attack:** The differential path involves 70 bits of information on the key and 67 bits are taken into account in the counter for 2⁶⁶ candidate triplets.

Steps of the attack

Hint on how to deal with the state-test equations

An application on the block cipher PRIDE 000000

- **Original attack:** The differential path involves 76 bits of the key for 2⁷⁴ candidate triplets.
- **Our attack:** The differential path involves 70 bits of information on the key and 67 bits are taken into account in the counter for 2⁶⁶ candidate triplets.

With 3 remaining bits, check if the over-determined systems of equations are consistent \rightarrow determine 23 bits of the key.

→ Less key candidates to consider.

Some results

Cipher	Rounds	Time	Memory	Data	Attack	Ref.	
CRAFT	21	$2^{106.53}$	2^{100}	$2^{60.99}$	ID	[HSE23]	
	21	2^{116} †	2^{68}	2^{56}	TD-MITM	$[AKM^+24]$	
	22	2^{125}	2^{72}	2^{58}	TD-MITM	$[AKM^+24]$	
	23	2^{125} †	2^{101}	2^{60}	TD-MITM	$[AKM^+24]$	
	23	$2^{111.46}$ †	2^{120}	$2^{60.99}$	D	$[SYC^+24]$	
	24	$2^{125.79}$	2^{106}	2^{62}	TD-MITM	this work	
	25	$2^{125.71}$	2^{106}	2^{64}	TD-MITM	this work	
PRIDE	18	$2^{63.3}$	2^{35}	2^{61}	D	[LR17]	
	18	$2^{57.83}$	2^{56}	2^{61}	D	this work	
Serpent	12	$2^{233.55}$	$2^{127.92}$	$2^{127.92}$ CP	DL	$[BCD^+22]$	
	12	$2^{242.93}$	$2^{118.40}$	$2^{118.40}$ CP	DL	BCD^+22	
	12	2^{240}	$2^{118.40}$	$2^{118.40}$ CP	DL	this work	
D	Differential		TD-MITM Trun		cated Differential MitM		
DL	Differential-Linear		ID	Impo	Impossible Differential		
\mathbf{CP}	Chosen Plaintext		KP	Knov	Known Plaintext		

Table 1: Summary of best known differential attacks on CRAFT, Serpent and PRIDE

†: Time complexity not measured in cipher evaluations

Conclusion

Conclusion

- \rightsquigarrow Generic way to apply an already known technique.
- \leadsto Can be applied in different families of differential attacks \rightarrow generalization to different context.
- → Generic approach to solve big systems of equations.

Open questions and future works

- \rightsquigarrow Implement the technique in a tool.
- $\rightsquigarrow\,$ Is there a better way to solve the equations ?

Conclusion

Conclusion

- \rightsquigarrow Generic way to apply an already known technique.
- \leadsto Can be applied in different families of differential attacks \rightarrow generalization to different context.
- → Generic approach to solve big systems of equations.

Open questions and future works

- \rightsquigarrow Implement the technique in a tool.
- $\rightsquigarrow\,$ Is there a better way to solve the equations ?

Thank you for your attention !